

Adobe

Motivation

Recent Generative Compositing Methods require a mask as input, defining the region of generation. This leads to several limitations:

- Drawing an accurate mask can be non-trivial, leading to unnatural composite images.
- It limits the ability to synthesize appropriate **object effects** (long shadows, reflections, ...).
- Background areas around the object tend to be inconsistent with the original background.

We propose:

- Introduce novel task: "Unconstrained Image Compositing"
- Diffusion model for unconstrained image compositing, trained on synthesized paired data

Data Generation

- 1. Segment foreground objects and filter out those too large/ small.
- 2. Detect shadows using instance shadow detector.
- 3. Use heuristics for approximating reflection masks.
- 4. Define inpainting mask as union of object, shadow and reflection masks.
- 5. Apply GAN-based inpainting model followed by Diffusion-based inpainting model for obtaining a clean background image.

Thinking Outside the BBox: Unconstrained Generative Object Compositing

Gemma Canet Tarrés¹, Zhe Lin², Zhifei Zhang², Jianming Zhang², Yizhi Song³, Dan Ruta¹, Andrew Gilbert¹, John Collomosse^{1,2}, Soo Ye Kim²

¹ University of Surrey, ² Adobe Research, ³ Purdue University

a) Long Shadows

b) Long Reflections

Applications

c) Obj-Obj Interaction

d) Multi-Object

Comparison to SoTA Object Placement Prediction

SimOPA \uparrow **LPIPS** \uparrow Ours (w/o bbox) 0.382

 $\vec{\sigma}$ Table 2: Quantitative evaluation of predicted location and scale of our model compared to state-of-the-art object placement prediction models. LPIPS is $\times 10^{-3}$.

Comparison to SoTA Generative Object Compositing

Benefits of unconstrained compositing approach:

(i) Better background preservation (rows 3-6).

(ii) More natural object effects (i.e. shadows and reflections) beyond the bounding box (rows 3-4).

(iii) Can adjust any **misaligned bounding box** (rows 1-2).

line (Compositing Quality) line (Identity Preservation)	
Ours	
Ours	
Ours	
Ours 53.1 54.0	
Ours	

Method	DreamBooth			Pixabay-Comp			
	$\overline{ ext{CLIP-Score}^{\uparrow}}$	$\mathbf{DINO} extsf{-}\mathbf{Score}^{\uparrow}$	$\mathbf{DreamSim} \downarrow$	$\mathbf{FID}\!\!\downarrow$	CLIP-Score ↑	$\mathbf{DINO} ext{-}\mathbf{Score}\uparrow$	DreamSim↓
$ObjectStitch^{\dagger}$ [50]	78.018	85.247	0.342	70.111	74.964	77.506	0.488
$PaintByExample^{\dagger}$ [62]	77.782	79.887	0.438	82.923	76.604	75.707	0.515
TF-ICON* [36]	79.094	81.781	0.341	77.368	75.694	77.810	0.485
Any Door^{\ddagger} [9]	80.619	83.632	0.272	72.996	80.284	80.829	0.399
ControlCom $^{\diamond}$ [68]	74.312	70.497	0.424	66.071	72.006	67.476	0.614
$\rm Ours~(w/~bbox)$	80.946	85.646	0.285	62.406	77.129	80.896	0.395
Table 1: Quantitative comparison of composition quality and identity preservation							

FID is only computed on Pixabay-Comp, which has ground truth images. [†]: Model finetuned on the same data as Ours.[‡]: Paper version, already includes diverse video and multiview data. *: Paper version, inference-based model that does not require training. \diamond : Paper version, no available training code.

PA			Pixabay-Comp			
$\mathbf{oU} > 0$	$0.5\uparrow$	$\overline{\mathbf{mean-IoU}}\uparrow$	$\overline{{ m IoU}>0.5}\uparrow$	mean-IoU↑	LPIPS ↑	
16.8 $^{\circ}_{\prime}$	76	0.094	48.0~%	0.246	1.218	
12.2 0	%	0.189	30.2~%	0.327	2.832	
11.2 $^{\circ}_{\prime}$	%	0.194	8.6~%	0.237	2.072	
10.8 %	%	0.123	12.2~%	0.230	0.000	
31.4	%	0.196	65.4~%	0.562	3.158	

