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Motivation

Recent Generative Compositing Methods require a mask as input, defining the region of
generation. This leads to several limitations:

- Drawing an accurate mask can be non-trivial, leading to unnatural composite images.
- It limits the abillity to synthesize appropriate object effects (long shadows, reflections, ...).
- Background areas around the object tend to be inconsistent with the original background.

We propose:

- Introduce novel task: “Unconstrained Image Compositing”
- Diffusion model for unconstrained image compositing, trained on synthesized paired data
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Segment foreground objects and filter out those too large/ small.

Detect shadows using instance shadow detector.

Use heuristics for approximating reflection masks.

Define inpainting mask as union of object, shadow and reflection masks.
Apply GAN-based inpainting model followed by Diffusion-based inpainting
model for obtaining a clean background image.
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Benefits of unconstrained compositing
approach:

(1) Better background preservation
(rows 3-6).

(i1) More natural object effects (i.e.
shadows and reflections) beyond the
bounding box (rows 3-4).

(i) Can adjust any misaligned
bounding box (rows 1-2).
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A‘W[},.'

L4' ,,,

B Bad Neutral = Good
OPA Pixabay-Comp N TopNet
8 Method . £ T o
O SimOPA 1 LPIPST IoU > 0.57 mean-IoU?T IoU > 0.5 mean-IoUt{ LPIPS? 8
| -
® TopNet [74] 0.256 2758  16.8 % 0.094 48.0 % 0.246 1.218 2 “G -
% GracoNet [73] 0.395  0.836  12.2% 0.189 30.2 % 0.327  2.832 > -
-_; PlaceNet [69] 0.197 0.746 11.2 % 0.194 8.6 % 0.237 2.072 2
©
-'E TERSE [53] 0.319 0.000 10.8 % 0.123 12.2 % 0.230 0.000 CL) TERSE
C )
@ Ours (w/o bbox) 0.382 5.619 31.4 % 0.196 65.4 % 0.562 3.158 g .
) : : : : : —
O Table 2: Quantitative evaluation of predicted location and scale of our model compared m “

to state-of-the-art object placement prediction models. LPIPS is x107°.



