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Camera Tracking Systems and their

Democratization

By Irene Muioz Lépez and Andrew Gilbert

Abstract

Computer vision encompasses the analysis, process-
ing, and interpretation of visual data. Tracking is a
subset of this field, where systems recognize ob-
jects or salient features in a scene to determine their
displacement across subsequent frames in a video
stream. This facilitates automation, increases efficien-
cy, and expands the functionality of these systems to
applications in surveillance, medicine, and entertain-
ment, among other fields. In recent years, Virtual
Reality (VR) and Augmented Reality (AR) systems
have gained popularity, prompting the development
of camera tracking technigues. Camera tracking as-
sesses the geometry and poses of a camera within a
scene. Many tools are available to analyze and pro-
cess camera tracking information, but most are pro-
prietary, making information about them scarce; their
availability to the general public also varies. To de-
termine the democratization of the technology, three
different tracking systems were compared. Two of
these systems are standard tools used in the industry;
the third system was a tracker built using OpenCV’s
open-source tools. A dataset of tracking values under
different video parameters was gathered for all three
trackers. By comparing and examining these results, it
was determined that the tracking system was built us-
ing OpenCV and met industry standards. The impact
of noise and lower resolution on the tracking system’s
performance was also assessed qualitatively by com-
paring tracking results in Unreal Engine. These results
revealed that the democratization of tracking tech-
nology is limited by the equipment that the general
public can access. This research aimed to understand
better the workflow, optimization, and democratiza-
tion of camera tracking systems.
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omputer vision, through training systems to
analyze digital images or videos, enhances
workflow automation and efficiency.' Identi-
fying and tracking objects reliably is a popu-
lar field in computer vision, with wide-rang-
ing applications in surveillance, security,
medicine, and human-computer interfaces.?
Tracking relies on following motion across a sequence of
frames in a video stream, which may be done by focusing on
specific scene areas or object features. Thus, in tracking, chal-
lenges may arise from noise, changes in illumination, and
occlusions.** Another significant source of error is resolu-
tion.”® These can all affect feature detection, hindering the
matching of features across frames and depth estimation.

Camera Tracking estimates the camera’s geometry and
poses in a scene.’ This is essential for Virtual Reality (VR),©
and Augmented Reality (AR),"' and the global pandemic also
encouraged a more widespread use of the technology in
Virtual Production (VP).”*3 Camera tracking systems can be
either marker-based or marker-less. Marker-based systems
track motion by following the displacement of acoustical,
mechanical, magnetic, or optical markers.* While reliable,
these systems have a more complex setup and upkeep, and
noise or marker occlusion from movement can hinder
tracking performance. Marker-less systems make use of di-
rect scene features for tracking. Relying on the correct detec-
tion of features rather than pre-made markers adds complex-
ity and a greater risk of error to the tracking system, but it
also provides greater flexibility, since the scene does not have
to be prepared with the careful placement of markers before
tracking.® Therefore, marker-less systems are more accessi-
ble to the general public.

There is a range of software tools available for markerless
camera tracking, such as Adobe’s After Effects!® (paid-for)
and Blender'™® (free access), with varying levels of public
accessibility.

Unreal Engine' (UE) (free access), a popular software used
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in the film and video games industry, offers open-source
tools for simulations and pre-visualization. These systems
have contributed to the democratization of camera tracking
and VP, encouraging experimentation and creativity from
a wider public.?*® Furthermore, OpenCV? (Open-Source
Computer Vision Library) offers an open-source library of
tools for building a tracking system. At a time of such ad-
vancements and claims of accessibility in camera tracking
technology, its limits should be tested to properly assess the
extent of its democratization.

This research aims to understand the technology behind
camera tracking, determine the optimal parameters and
limitations of common workflows, and assess the technolo-
gy’s accessibility to the broader public.

Contributions
1. The creation of a reliable camera tracker to compete
with industry-standard tools (Blender and AfterEffects).
This provided a better understanding of the workflow
of camera tracking systems used in industry software.
Given the complexity of setup and maintenance for mark-
er-based systems, this project focused on markerless sys-
tems. Genc et al’ proposed a system that first learns a
scene’s structure by tracking salient features, then com-
putes an estimate of the camera’s pose within the scene.
The marker-less OpenCV system was tested against the
tracking methods used by AfterEffects® and Blender."*®
These systems track the position, rotation, and scale of
salient features in a scene to reconstruct camera motion.
AfterEffects is a paid-for software tool, while Blender is
free for public use. We tested these systems and compared
their tracking results to assess the technology’s accessibil-
ity, examining whether the paid options truly outperform
the free ones and which one is better suited for low-budget
productions that the general public might want to create.?
Moreover, a tracker was built using OpenCV’s open-source
tools to further understand the components and workflow
of a successful camera tracker and to determine whether
it could meet industry standards.

2. Determine the democratization of the technology by
researching how different video resolutions and noise
levels affect tracking systems.

The detection and subsequent tracking of distinct features
in a scene (areas of high contrast, edges, corners, texture
changes) have been widely used in tracking,** but they can
be susceptible to drift and inaccuracies in cluttered environ-
ments or in the presence of noise.® Even in recent systems,
such as the one proposed by Zhou et al.,” noise remains a
concern in tracking. Their model used deep learning and
convolutional neural networks to improve robustness, yet
the tracking accuracy degraded quickly in the presence of
noise. Likewise, Handa et al.” and Younes et al.® agree that
higher video resolution improves tracking accuracy. Both
noise and resolution can affect feature detection in track-
ing, thereby hindering feature matching across frames
and depth estimation. In researching how different video
resolutions and noise levels affect camera tracking, we de-
termined the technology’s flexibility and availability to the
general public.

3. The qualitative analysis of how different video pa-
rameters impact the performance of tracking systems
in a virtual environment.

Significantly propelled by the global Covid-19 pandemic,
virtual production methods have grown in popularity over
recent years.'”!! By testing the efficiency of the tracks in a
virtual environment, the difference between technical pre-
cision and human perception,* and the real impact of the
tested parameters, the study determined these differences.

Methodology
This section provides an overview of the method imple-
mented to:
- Build an OpenCV camera tracker to compete with in-
dustry-standard tools.
- Develop a workflow to test the different tracking systems
under varying video parameters and their effects in a
virtual environment.

Detection of Tracking algorithm

Salient Features
features

— executed on detected — Ruiation Vectors to —
solve the estimation

Extraction of

Translationiand Vectors are integrated

over time, to obtain
coordinates and Euler

of camera motion Angles

FIGURE 1. Overview of a tracking system.
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FIGURE 2. Salient features detected using OpenCV’s SIFT LAM tools marked in a frame with red crosses.

Building an OpenCV Camera Tracker
This section breaks down the workflow of building a camera
tracker using OpenCV. The tracker was built using OpenCV
and follows the workflow shown in Fig. 1.

Detection of Salient Features

The detection and consequent tracking of salient features in
a scene (areas of high contrast, edges, corners, texture chang-
es) is widely used in tracking. Using OpenCV’s salient-feature
detection tools, areas of interest were detected and marked
with red crosses as shown in Fig. 2.

Estimating Motion Between Consecutive Frames in a Video
Sequence Using Optic Flow Functions

Optic Flow (OF) works by mapping pixel displacements
across a sequence of frames into vectors, thus tracking mo-
tion.”> OpenCV? provides an OF tracking function based
on the Lucas-Kanade (LK) algorithm. The LK?* system uses
the spatial intensity gradient in images to find a good pixel
match across frames. The LK algorithm has served as a build-
ing block for many systems while also remaining relevant as
a stand-alone algorithm.*

Performing the OpenCV’s OF-LK function on the previ-
ously detected salient features, an Essential Matrix (E) from
the video is extracted. E is calculated using the Camera Ma-
trix K and the corresponding matched feature points. K
describes camera parameters, providing information about
how 3D points are projected onto the 2D image plane. K is
represented as:

_ L
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wheref, and fy are the focal lengths in the x and y directions,
indicating the dimensions of the scene. The center point co-
ordinates ¢ and ¢, set up the origin of the image plane in the
camera’s coordinate system. The skew value s allows for com-
pensation for a known skew of the camera sensor used; ex-
cept for older cameras, this is usually O, meaning the image
axes are orthogonal. The last row of the matrix is a constant
representing a homogeneous coordinate.

K provides essential information about how 3D points are
projected onto the 2D image plane, enabling the tracking
system to solve for the camera’s motion. In E, using OpenCV’s
OF-LK algorithm, the feature points detected are assessed
in the context of K to determine the displacement between
corresponding points in the sequence of frames.

From E, the rotation and translation information of the
camera are extracted by estimating the relative camera pose
between frames. The translation vectors extracted for each
frame are then integrated over time to obtain the camera tra-
jectory in x, y, z coordinates. Euler Angles are also extracted
from the rotation matrix to accurately estimate the camera’s
pose. Euler angles provide the orientation of an object in 3D
space relative to the initial frame of the video, in the form of
roll, pitch, yaw, each corresponding to a rotation on the x,y,
or z axis.?®

These translation and rotation coordinates are in a format
that UE can read to create a moving camera in a virtual envi-
ronment. The motion, however, is jagged and abrupt. This is
because the integration of the vectors is performed one frame
at a time rather than considering the motion of the entire vid-
eo. A running average? isimplemented to smooth the motion.

Workflow to Test the Tracking Systems

The workflow designed to test the tracking systems under
different video parameters is broken down in Fig. 3.

1545-0279/26©2026SMPTE



CREATING VIDEOS

5 ORIGINAL 4K, 50fps VIDEOS

l CREATING VERSIONS l

ADDING CHANGING

RESOLUTION

25% TO:
50%
75% . 480
720:: Detection of
OF . 1080p salient features
GAUSSIAN

NOISE

—> BLENDER & AFTEREFFECTS TRACKERS

——P BUILDING AN OPENCV CAMERATRACKER ——> _oouoerory. ——p COORDINATES ——p UNREAL ENGINE

Estimating motion
using Optic Flow

INTEGRATING THE

COORDINATES EXTRACTING

SETTING UP

FROM UNREAL
ENGINE

FOR QUALITATIVE

SYSTEMS INTO ANALYSIS

UNREAL ENGINE

FIGURE 3. Overview of the workflow followed by this research.

FIGURE 4. Frames taken from one of the videos in the dataset. All videos followed the same movement progression, starting with the top-left frame
and ending with the bottom-right frame. The motion was a hand-held walk down a path.

First, the videos were created and versioned for testing.
Then, the coordinates obtained from the different trackers
were integrated into UE and exported in the proper format.
Finally, the tracking systems were analyzed individually and
in comparison, and the impact of different video parame-
ters was assessed qualitatively in UE.

Creating the Videos

Five videos were created as a test dataset for the experiments.
Each video was taken with a duration of around 10 sec and
had the same motion of walking down a street. All videos
were recorded at 4K (3840 x 2160 pixels) so that the resolu-
tion could be degraded.

Figure 4 illustrates the motion of the videos, walking in a
straight line down a path.

Using AfterEffects, Gaussian Noise*® was added to each
video at 25%, 50%, and 75%. This means that for each per-
centage, the same proportion of random pixels in the video
was selected and disturbed with random motion. Similarly,
using Adobe’s Media Encoder, versions of each video were
created in resolutions of 1080p (1920 x 1080 pixels), 720p
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(1280 x 720 pixels), and 480p (640 x 480 pixels).

Both noise and lower resolution degrade tracking sys-
tems, as they can affect areas of high contrast, such as edges,
corners, or changes in texture, which are typically used as
salient features to track across frames. The aim of creating
these versions is to analyze the impact of these parameters
on tracking performance, both quantitatively and qualita-
tively. This determines the democratization of this technol-
ogy to the broader public, which might not have high-end
equipment at their disposal, but rather lower-end, noise-
prone, and lower-resolution equipment.

Figures 5 & 6 illustrate different versions of a video creat-
ed at varying levels of Gaussian Noise and other resolutions.

Existing Camera Trackers
While the proprietary nature of AfterEffects' and Blender'*!®
makes details on the inner workings of their tracking tools
difficult to obtain, the available documentation describes
models based on salient feature detection and optic flow
tracking.

In Blender, the first frame of the video is analyzed to de-
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FIGURE 5. The zoomed-in and cropped first frame of each version of a video with varying amounts of noise.
On the top left, the original video with no added noise. In the top-right corner, Gaussian Noise was added
to 25% of the pixels in the video. On the bottom left, Gaussian Noise was added to 50% of the pixels in the
video. In the bottom-right corner, Gaussian Noise was added to 75% of the pixels in the video.

FIGURE 6. The first frame of each version of a video with varying resolution. From left to right, resolutions decrease from the original 4K to 1080p,

then 720p, and lastly 480p.

tect salient features, as shown in Fig. 7. The video is then an-
alyzed, tracking the motion of each marked feature through-
out.'”8

Likewise, AfterEffects'® analyzes the first frame for salient
features and then tracks across the video.

Understanding Differences in Coordinate Systems

While the trackers (OpenCV, Blender, and AfterEffects) ren-
der coordinates in the same format as UE, integrating them
into the virtual environment remains challenging due to dif-
ferences in Cartesian coordinate alignment.
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UE uses a left-handed, Z-axis up system. Very few systems
follow this alignment, so when translating coordinates from
these other systems to UE, a one-to-one x,y,z copy will cause
€rrors.

In OpenCV,*? the camera’s principal axis is aligned with
the Z-axis of the coordinate system and follows the right-
hand rule (where the Y-axis is oriented downward). This
meansx, J, z coordinates must be converted to -z, -x, y to align
with the coordinate system in UE. An API capable of commu-
nicating with UE can be imported into Python to enable the
OpenCV tracker to communicate with UE. The workflow for
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FIGURE 7. Blender Tracking Marker Schematics.®

obtaining camera coordinates from the OpenCV tracker to
UE is shown in Fig. 8.

Likewise, Blender uses the right-hand rule, but with Z
pointing upward, a mirror image of the left-hand rule used
by UE. AfterEffects exports the coordinates using the left-
hand rule, like UE, but with the Y-axis pointing upwards in-
stead of the Z-axis.

Extracting coordinates from UE to Equalize Coordi-
nates Across the Different Tracking Systems

For the AfterEffects and Blender tracking systems, detecting
different features between videos means the selected ground
planes/floor and origins used to orient the tracking might
vary. Therefore, to make a fair comparison of the different
tracking systems, the coordinates for each tracker were ex-

tracted from UE, offset to begin at the origin (0,0,0), and new
machine-readable CSV files were created with these equal-
ized values.

Setting up Unreal Engine for a Qualitative Analysis of
the Performance of Tracking Systems

For the qualitative analysis of the tracking systems and the
effect of different video parameters on tracking perfor-
mance, a virtual scene is created in UE that includes ele-
ments matched to those in the source videos. As shown in
Fig. 9, the right-hand trees are matched to the benches in the
original scene from the source video. This aids in compar-
ing the fluidity of movement and the spatial accuracy of the
track.

The scaling for the different tracking systems had to
be adjusted proportionally to the magnitude of the vir-
tual scene to ensure the track matched the source videos
in pace and displacement. All tracks were then exported
from the UE sequencer and compared with the original
videos to qualitatively assess the impact of different video
parameters on tracking. This further assesses the democ-
ratization of the tracking technology by examining the op-
timal parameters for the seamless replication of motion in
a virtual environment.

Results and Analysis
To determine whether a tracker built using OpenCV can
meet the same standard as the other two trackers, their
performances must be compared. Tables 1 and 2 show the
mean error per frame and the standard deviation of track-
ing for the five videos, compared with tracking of versions
of the same videos at different resolutions and with varying
percentages of Gaussian noise added.

After inspecting the results affected by noise in Table 1,

using OpenCV tracker CSV files

Exploiting the Python API Populate the Sequencer
Solve Cameraimation Save coordinates into for UE: Account for with Translation and
machine-readable —% e Create a Camera Actor differences in =% Rotation data using the

* Create Sequencer for the
Camera Actor

coordinates in the CVS files
as keyframes

coordinate systems

FIGURE 8. Steps taken to successfully plot coordinates obtained from the OpenCV tracker into Unreal Engine.

FIGURE 9. Example comparison of a source video (right) and a virtual scene with matching elements (left) to compare the tracking performance.
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TABLE 1. Average Impact of Noise on the Performance of the Trackers.

Tracker % of Gauss_ian Noise Average Mean Error (pixels) Av_erage Standard Deviatio_n
added to video across the dataset (pixels) across the dataset videos
OpenCV 25 16.7 7.96
50 18.8 8.02
75 16.2 10.41
Blender 25 100.7 66.5
50 90.54 54.4
75 12.8 75.5
AfterEffects 25 6273.28 3985.2
50 8574.82 5807.98
75 10473.43 7231.93

TABLE 2. Average Impact of Resolution on the Performance of the Trackers.

Tracker Compal:ed Video Average Mean Error (pixels) Av_erage Standard Deviation
Resolution across the dataset (pixels) across the dataset
OpenCV 480 SD 105.31 62.04
720 HD 99.94 60.16
1080 HD 55.42 275
Blender 480 SD 14.62 67.46
720 HD 94.24 62.96
1080 HD 100.68 64.06
AfterEffects 480 SD 825812 5476.3
720 HD 6968.68 463516
1080 HD 4529.96 3001.42

the OpenCV tracker achieved the lowest error across the data-
set. The mean error per frame for the OpenCV system was the
lowest and the least spread across the three noise percent-
ages. This average error is more pronounced in the standard
deviation of the tracking relative to the original, as predicted,
with the track’s deviation increasing with the percentage of
noise added to the videos. Even so, the OpenCV tracker con-
tinues to outperform the other two trackers in this aspect, too,
with the average deviation from the original videos still not
surpassing +2 pixels in coordinates between noise percentage.

The tracking system from Blender also follows the trend
of, on average, the highest percentage of noise render-
ing the most deviation from the original track. The aver-
age mean error per frame is much higher than that of the
OpenCV tracker, and the differences across the three noise
levels exceed +10 pixels in coordinates, indicating greater
sensitivity to noise in the tracker’s performance.

The AfterEffects tracker has the poorest performance
overall. Its average mean error per frame across all noise
percentages is over 100 times that of the OpenCV tracker
and over 10 times that of the Blender tracker. This, however,
might be due to different scaling and coordinate systems.
While the pattern of the greatest noise percentage rendering
the most significant error remains true, the average standard
deviation almost doubles between 25% and 50% noise add-
ed, indicating the most significant impact of noise on the
system’s tracking performance.

The results from changing resolutions in Table 2 show
similar patterns. In this case, the OpenCV tracker continues
to outperform the other two systems, but its results are clos-
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er in range to those of the Blender tracker this time. For the
OpenCV system, both average error per frame and standard
deviation double when moving from 1080p to 720p. Results
between 720p and 480p differ less noticeably, suggesting
that once the tracker has reached a specific resolution, the
rapid degradation of tracking performance levels out.

The progressive deterioration in the tracker’s performance
asresolution decreases is less apparent in the Blender system.
The expected pattern is not observed, with the least error
obtained from the 720p video rather than the higher-reso-
lution 1080p. The changes between resolutions, however,
amount to only +4.5 pixels in the average standard deviation
from the original videos. This would indicate that while the
average error is slightly higher in the Blender tracker com-
pared to the OpenCV tracker, the actual impact between res-
olutions in Blender is far less noticeable.

The AfterEffects tracker behavior seems to resemble the
OpenCV system more closely. The expected pattern of lower
resolution negatively impacting the track’s performance is
observed. Unlike the OpenCV tracker, the impact of resolu-
tion on this system’s performance is more evenly distributed,
with approximately equal intervals (+2000 pixels) of increas-
ing average error as resolution decreases.

To further analyze the three systems, more specific exam-
ples can be examined.

OpenCV Tracker

The following examples are representative of the results ob-
tained across the dataset using the OpenCV tracker and are
also proportional to those of the other tracking systems.
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FIGURE 10. Graphical representation of the effect Noise % had on x,y, and z coordinates for Video 1. The
original 4K video is drawn in blue. Noise levels cause deviations from the original values, thus degrading the

track’s accuracy.

Taking Video 1 as an example, Table 3 and Fig. 10 illus-
trate the OpenCV system’s performance under varying noise
levels. The tracker maintains stable performance in the pres-
ence of noise, with the mean error remaining under 5 pixels
across noise levels. The z-coordinate values are most affected
at noise levels of 50% and 75%, changing from negative to
positive, signaling a change in the direction of motion rela-
tive to the source.

Table 3 and Fig. 11 inspect the impact decreasing resolu-
tions have on the OpenCV system’s tracking when compared
to the original Video 1. Examining the mean error per frame,
the best tracking performance is achieved at 1080p, while
lower resolutions yield significantly larger error values. Coor-
dinate x indicates the direction of motion, while y and z refer
to side-to-side and up-down motion, respectively. Where the
original 4K and 1080p resolutions show a positive increase in
X, representing motion forward, the resolutions of 720p and

1545-0279/26©2026SMPTE

TABLE 3. Performance Results of the OpenCV Tracking System on Dif-
ferent Noise % Versions of Video 1 Compared to the Source Video.

Standard | % of Gaussian Noise | Mean Error | Standard Deviation
Video added to video (pixels) (pixels)
Video 14K | 25 14.7 6.42

50 10.4 3.78

75 13.9 5.87

TABLE 4. Performance Results of the OpenCV Tracking System on Dif-
ferent Resolution Versions of Video 1 Compared to the Source Video.

Standard | Compared video Mean Error | Standard Devia-
Video Resolution (pixels) tion (pixels)
Video 14K | 480 SD 99.0 611

720 HD 719 426

1080 HD 299 10.5
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FIGURE 11. Graphical representation of the effect different Resolutions had on x,y, and z coordinates for

video.

480p show a decrease in x, implying an opposite motion rel-
ative to the source.
1. The original 4K video is drawn in blue; the lower
resolutions cause deviation from the original values,
thus degrading the accuracy of the track.

Assessing the Qualitative Impact of Noise and Resolu-
tion in Unreal Engine

The performance of the built OpenCV tracker was also
evaluated in a virtual environment built in UE.

Figure 12 establishes the expected results by showcas-
ing how the first and last frames of the original version
of Video 1 translated into the virtual environment in UE.
In selecting a virtual scene, the aim was to match certain
elements to the source video to better evaluate the cam-
era’s tracking by comparing their positions and distances
in the beginning and end frames. In this case, the two trees
on the left-hand side of the virtual environment frame
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were roughly matched to the two benches in similar posi-
tions from the original video.

Figures 13 & 14 show frames taken at the same times
for each video version (noise-free and with 25%, 50%, and
75% added noise). These two examples are taken at sec-
onds 2 (frame 100) and 6 (frame 300) of the 8-second video
(400 frames). While there are differences throughout the
versions 2 seconds in, these are much less noticeable than
those from the frames 6 seconds into the video. The track-
ing differences worsen over time, causing the drift from
the original track to increase as time goes by.

Much more drastic differences are observed when com-
paring the results for the 4K Video 1 track with those from
the tracks performed at resolutions 1080p, 720p, and 480p.

Figure 15 illustrates the drastic negative impact of res-
olution on tracking performance by comparing frame 200
across all video versions (original 4K resolution, 1080p,
720p, and 480p). The disparity between frames and the
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FIGURE 12. A comparison of the first frame of Video 1 (top left) with that same frame in the virtual environment created in
UE (top right). On the second row, the bottom-left image shows the last frame of the video, and the bottom-right image

shows it in the virtual environment.

FIGURE 13. Frames taken at 2 seconds into Video 1from the four versions. The noise-free version (top left), the version
with 25% noise added before the track (top right), the version with 50% noise added before the track (bottom left), and the

version with 75% noise added before the track (bottom right).

lack of resemblance to the original video suggest the drift-
ing away from the original track is noticeable and entire-
ly at odds with what the motion should be. The OpenCV
tracker produces unusable results at resolutions below 4K.

Discussion

Both noise and resolution affect the performance of all
trackers. Overall, however, trackers generally have low-
er error due to noise than to decreasing resolution. The

1545-0279/26©2026SMPTE

OpenCV system seemed to outperform the other two
trackers, consistently attaining the lowest mean error per
frame and standard deviation relative to the original tracks
across the dataset at different noise percentages and reso-
lutions, followed by Blender and, lastly, AfterEffects.

The analysis of the results also matches the track’s perfor-
mance for each version in UE. Using Video 1 as an example,
noise at any level negatively affected the motion’s smooth-
ness but preserved the original trajectory. The differences
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FIGURE 14. Frames taken at 6 seconds into Video 1from the four versions. The noise-free version (top left), the version
with 25% noise added before the track (top right), the version with 50% noise added before the track (bottom left), the

version with 75% noise added before the track (bottom right).

FIGURE 15. Frames taken at 4 seconds into Video 1from the four versions. 4K version (top left), the version at resolution 1080p
(top right), the version at resolution 720p (bottom left), the version at resolution 480p (bottom right). No frame is the same; the
differences are noticeable, suggesting that all the tracks have drifted drastically away from the original trajectory.

in tracking between videos at different noise levels were
minimal in the virtual environment. This suggests that the
OpenCV tracking system is resilient to high levels of noise in
a video during tracking and proves that while noise might
hinder the quality of a track, the results are still usable, albeit
prone to sporadic bursts of abrupt movement.

The noise-infused pixels disturb salient features, such as
edges or areas of high contrast, that tracking systems latch
onto to perform tracking and solve the camera motion. It
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appears that the tracking systems don’t latch onto individual
pixels as tracking points, but rather select a group of pixels
that form the salient feature. This technique prevents the loss
of tracking elements due to noisy pixels, since in the chosen
area, the probability that all pixels are noisy is reduced (un-
less 100% of the pixels in a video are noisy). This would also
explain why, while still having an impact on the track, the
average mean-error per frame and standard deviation from
the original render lower results compared to the changes
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in resolution. The areas selected as tracking points contain
enough pixels to be tracked with almost the same success as
anoiseless video.

Decreasing the resolution also worsened the trackers’
performance. The OpenCV tracker seemed to be relative-
ly the most affected by resolution. In contrast, Blender
and AfterEffects both maintained error values closer to
the same range as those obtained by varying amounts
of noise. This is perhaps because the areas that OpenCV
needs to track contain more pixels. As previously dis-
cussed, this would make them more resilient to noise but
would be negatively impacted by a reduction in resolu-
tion. Lower resolutions mean fewer pixels available to dis-
play the information in the image. This disrupts the detail
in salient features, and if the areas tracked by OpenCV
remain fixed in size, the same number of pixels in a low-
er-resolution image would encompass a larger area. This
would imply a loss of detail in the features to be tracked,
since within the same area, there can be overlapping
points of interest that introduce errors into tracking. In
the AfterEffects and Blender tracking systems, the mark-
ers used, as shown in Fig. 7, appeared physically larger
on the screen, thus appearing to encapsulate relatively
larger areas, but in reality, these were scaled due to the
lower resolutions. The way these two other systems com-
pensated for this was to reduce the number of markers
used, effectively selecting less salient features, to avoid
confusing overlapping areas that might induce error in
the tracker. This allowed these two systems to maintain
their errors within a similar range to the noise, while still
suffering from lower resolution.

It can be stated that both noise and resolution affect
tracking, with both parameters degrading track perfor-
mance. This would limit the extent of the democratization
of the tracking technology. The extent of the impact of these
parameters on tracking performance, however, can vary de-
pending on the tracking system and the measures in place to
limit the effect of the error.

Further Research

The following section will propose future research areas to
deepen the understanding of camera tracking technologies
and help overcome their limitations.

Improving the Performance of Trackers in Lower
Resolutions

The results in Section 3 indicate that the OpenCV tracker
struggled to a greater extent at low video resolutions than
with noise, whereas the other two tracking systems appear to
maintain similar error ranges across both parameters.

It was theorized that this was due to the number of pixels
per tracking point used by the OpenCV system. If this amount
is consistent across all resolutions, it would lead to overlapping
tracking points, rendering contradictory analyses of motion.
Therefore, following the systems of the other two trackers, one
possible solution to this issue is to develop a model in which
the number of tracking points detected and used decreases
with resolution, thus avoiding the damaging overlap.
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Jain et al.* found similar issues in their research, where
lower video resolutions increased the system’s processing
rate but reduced track accuracy. To overcome this, Svans-
trom et al** found that tracking with visible thermal and
acoustic markers yielded good performance even at lower
resolutions. While marker-based tracking systems are more
expensive to set up and maintain and thus less accessible to
the broader public, it would be beneficial to explore this tech-
nology to better understand how the problem of resolution
might be addressed.

Investigating the democratization of Real-time Camera
Tracking Technologies

It would be interesting to expand the scope of this research
further by assessing the democratization of real-time cam-
era tracking techniques. The best approach might be to ex-
amine the implementation of Simultaneous Localization
and Mapping (SLAM) techniques, which create a map of the
camera’s environment as it tracks its own position within it.

As proposed by Salas et al.,” the use of 3D object detec-
tion and recognition, rather than just salient features, can be
paired with SLAM models to improve the mapping and track-
ing of elements in a virtual scene in real-time. This approach
would, however, be better suited to scenes with repeated ele-
ments, which might not always be the case in general public
use. Ullah et al.*¢ suggest a different approach using Kalman
Filters, for which OpenCV provides dedicated tools. This
would allow the camera’s localization to be more accurately
determined in unknown environments.

Unfortunately, these systems often use Deep Neural Net-
works (DNNs), which require large-scale datasets and thus
fall beyond the scope of what is available to the general pub-
lic. As the research in this area progresses, however, it might
be possible to adapt these systems into less computationally
demanding models, thereby further democratizing camera
tracking technology.

Conclusion

Computer vision is an ever-growing field with many useful
applications. By analyzing, processing, and solving the mo-
tion in a video, camera tracking techniques can be developed
for VR, AR, and VP. This inspires continued research in the
field to understand better and manipulate the technology.
This project aimed to determine the full range of the democ-
ratization of this technology by posing three objectives.

The results illustrate the success of the tracker built with
open-source tools in competing with industry-standard
tools. To determine the optimal parameters for noise and
resolution to achieve good tracking performance, the results
show that both noise and resolution hinder the efficiency of
the tracking systems. Further inspection revealed that, in
general, tracking systems could still produce useful tracking
results in the presence of noise, but struggled quite acutely at
lower resolutions. Therefore, this limits the democratization
of tracking technology to equipment available to the broad-
er public, which can achieve higher resolutions. Lastly, the
practical impact of noise and resolution in a virtual scenar-
io was assessed. This examination further determined that
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while videos affected by noise could still render usable out-
comes in virtual scenes, those with lower resolutions strug-
gled to perform well.

In conclusion, while there are still limitations to the full
democratization of camera tracking systems, tools and re-
sources are available for the public to experiment and push
the boundaries of small-scale productions. Continued re-
search into tracking systems will further encourage their de-
velopment and aid their democratization.
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