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Camera Tracking Systems and their 
Democratization

C
omputer vision, through training systems to 
analyze digital images or videos, enhances 
workflow automation and efficiency.1 Identi-
fying and tracking objects reliably is a popu-
lar field in computer vision, with wide-rang-
ing applications in surveillance, security, 
medicine, and human-computer interfaces.2 

Tracking relies on following motion across a sequence of 
frames in a video stream, which may be done by focusing on 
specific scene areas or object features. Thus, in tracking, chal-
lenges may arise from noise, changes in illumination, and 
occlusions.3-6 Another significant source of error is resolu-
tion.7,8 These can all affect feature detection, hindering the 
matching of features across frames and depth estimation.

Camera Tracking estimates the camera’s geometry and 
poses in a scene.9 This is essential for Virtual Reality (VR),10 
and Augmented Reality (AR),11 and the global pandemic also 
encouraged a more widespread use of the technology in 
Virtual Production (VP).12,13 Camera tracking systems can be 
either marker-based or marker-less. Marker-based systems 
track motion by following the displacement of acoustical, 
mechanical, magnetic, or optical markers.14 While reliable, 
these systems have a more complex setup and upkeep, and 
noise or marker occlusion from movement can hinder 
tracking performance. Marker-less systems make use of di-
rect scene features for tracking. Relying on the correct detec-
tion of features rather than pre-made markers adds complex-
ity and a greater risk of error to the tracking system, but it 
also provides greater flexibility, since the scene does not have 
to be prepared with the careful placement of markers before 
tracking.15 Therefore, marker-less systems are more accessi-
ble to the general public.

There is a range of software tools available for markerless 
camera tracking, such as Adobe’s After Effects16 (paid-for) 
and Blender17,18 (free access), with varying levels of public 
accessibility.

Unreal Engine19 (UE) (free access), a popular software used 

Abstract 
Computer vision encompasses the analysis, process-
ing, and interpretation of visual data. Tracking is a 
subset of this field, where systems recognize ob-
jects or salient features in a scene to determine their 
displacement across subsequent frames in a video 
stream. This facilitates automation, increases efficien-
cy, and expands the functionality of these systems to 
applications in surveillance, medicine, and entertain-
ment, among other fields. In recent years, Virtual 
Reality (VR) and Augmented Reality (AR) systems 
have gained popularity, prompting the development 
of camera tracking techniques. Camera tracking as-
sesses the geometry and poses of a camera within a 
scene. Many tools are available to analyze and pro-
cess camera tracking information, but most are pro-
prietary, making information about them scarce; their 
availability to the general public also varies. To de-
termine the democratization of the technology, three 
different tracking systems were compared. Two of 
these systems are standard tools used in the industry; 
the third system was a tracker built using OpenCV’s 
open-source tools. A dataset of tracking values under 
different video parameters was gathered for all three 
trackers. By comparing and examining these results, it 
was determined that the tracking system was built us-
ing OpenCV and met industry standards. The impact 
of noise and lower resolution on the tracking system’s 
performance was also assessed qualitatively by com-
paring tracking results in Unreal Engine. These results 
revealed that the democratization of tracking tech-
nology is limited by the equipment that the general 
public can access. This research aimed to understand 
better the workflow, optimization, and democratiza-
tion of camera tracking systems.
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in the film and video games industry, offers open-source 
tools for simulations and pre-visualization. These systems 
have contributed to the democratization of camera tracking 
and VP, encouraging experimentation and creativity from 
a wider public.20 Furthermore, OpenCV21 (Open-Source 
Computer Vision Library) offers an open-source library of 
tools for building a tracking system. At a time of such ad-
vancements and claims of accessibility in camera tracking 
technology, its limits should be tested to properly assess the 
extent of its democratization.

This research aims to understand the technology behind 
camera tracking, determine the optimal parameters and 
limitations of common workflows, and assess the technolo-
gy’s accessibility to the broader public.

Contributions
1. The creation of a reliable camera tracker to compete 
with industry-standard tools (Blender and AfterEffects).

This provided a better understanding of the workflow 
of camera tracking systems used in industry software. 
Given the complexity of setup and maintenance for mark-
er-based systems, this project focused on markerless sys-
tems. Genc et al.9 proposed a system that first learns a 
scene’s structure by tracking salient features, then com-
putes an estimate of the camera’s pose within the scene. 
The marker-less OpenCV system was tested against the 
tracking methods used by AfterEffects16 and Blender.17,18 

These systems track the position, rotation, and scale of 
salient features in a scene to reconstruct camera motion. 
AfterEffects is a paid-for software tool, while Blender is 
free for public use. We tested these systems and compared 
their tracking results to assess the technology’s accessibil-
ity, examining whether the paid options truly outperform 
the free ones and which one is better suited for low-budget 
productions that the general public might want to create.22 
Moreover, a tracker was built using OpenCV’s open-source 
tools to further understand the components and workflow 
of a successful camera tracker and to determine whether 
it could meet industry standards.

2. Determine the democratization of the technology by 
researching how different video resolutions and noise 
levels affect tracking systems.
The detection and subsequent tracking of distinct features 
in a scene (areas of high contrast, edges, corners, texture 
changes) have been widely used in tracking,3,4 but they can 
be susceptible to drift and inaccuracies in cluttered environ-
ments or in the presence of noise.6 Even in recent systems, 
such as the one proposed by Zhou et al.,5 noise remains a 
concern in tracking. Their model used deep learning and 
convolutional neural networks to improve robustness, yet 
the tracking accuracy degraded quickly in the presence of 
noise. Likewise, Handa et al.7 and Younes et al.8 agree that 
higher video resolution improves tracking accuracy. Both 
noise and resolution can affect feature detection in track-
ing, thereby hindering feature matching across frames 
and depth estimation. In researching how different video 
resolutions and noise levels affect camera tracking, we de-
termined the technology’s flexibility and availability to the 
general public.

3. The qualitative analysis of how different video pa-
rameters impact the performance of tracking systems 
in a virtual environment.
Significantly propelled by the global Covid-19 pandemic, 
virtual production methods have grown in popularity over 
recent years.10,11 By testing the efficiency of the tracks in a 
virtual environment, the difference between technical pre-
cision and human perception,23 and the real impact of the 
tested parameters, the study determined these differences.

Methodology
This section provides an overview of the method imple-
mented to:

• �Build an OpenCV camera tracker to compete with in-
dustry-standard tools.

• �Develop a workflow to test the different tracking systems 
under varying video parameters and their effects in a 
virtual environment.

FIGURE 1. Overview of a tracking system.
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where fx and fy are the focal lengths in the x and y directions, 
indicating the dimensions of the scene. The center point co-
ordinates cx and cy set up the origin of the image plane in the 
camera’s coordinate system. The skew value s allows for com-
pensation for a known skew of the camera sensor used; ex-
cept for older cameras, this is usually 0, meaning the image 
axes are orthogonal. The last row of the matrix is a constant 
representing a homogeneous coordinate.

K provides essential information about how 3D points are 
projected onto the 2D image plane, enabling the tracking 
system to solve for the camera’s motion. In E, using OpenCV’s 
OF-LK algorithm, the feature points detected are assessed 
in the context of K to determine the displacement between 
corresponding points in the sequence of frames.

From E, the rotation and translation information of the 
camera are extracted by estimating the relative camera pose 
between frames. The translation vectors extracted for each 
frame are then integrated over time to obtain the camera tra-
jectory in x, y, z coordinates. Euler Angles are also extracted 
from the rotation matrix to accurately estimate the camera’s 
pose. Euler angles provide the orientation of an object in 3D 
space relative to the initial frame of the video, in the form of 
roll, pitch, yaw, each corresponding to a rotation on the x,y, 
or z axis.28

These translation and rotation coordinates are in a format 
that UE can read to create a moving camera in a virtual envi-
ronment. The motion, however, is jagged and abrupt. This is 
because the integration of the vectors is performed one frame 
at a time rather than considering the motion of the entire vid-
eo. A running average29 is implemented to smooth the motion.

Workflow to Test the Tracking Systems
The workflow designed to test the tracking systems under 
different video parameters is broken down in Fig. 3.

Building an OpenCV Camera Tracker
This section breaks down the workflow of building a camera 
tracker using OpenCV. The tracker was built using OpenCV 
and follows the workflow shown in Fig. 1.

Detection of Salient Features
The detection and consequent tracking of salient features in 
a scene (areas of high contrast, edges, corners, texture chang-
es) is widely used in tracking. Using OpenCV’s salient-feature 
detection tools, areas of interest were detected and marked 
with red crosses as shown in Fig. 2.

Estimating Motion Between Consecutive Frames in a Video 
Sequence Using Optic Flow Functions
Optic Flow (OF) works by mapping pixel displacements 
across a sequence of frames into vectors, thus tracking mo-
tion.25 OpenCV25 provides an OF tracking function based 
on the Lucas-Kanade (LK) algorithm. The LK26 system uses 
the spatial intensity gradient in images to find a good pixel 
match across frames. The LK algorithm has served as a build-
ing block for many systems while also remaining relevant as 
a stand-alone algorithm.27

Performing the OpenCV’s OF-LK function on the previ-
ously detected salient features, an Essential Matrix (E ) from 
the video is extracted. E is calculated using the Camera Ma-
trix K and the corresponding matched feature points. K 
describes camera parameters, providing information about 
how 3D points are projected onto the 2D image plane. K is 
represented as:

FIGURE 2. Salient features detected using OpenCV’s SIFT LAM tools marked in a frame with red crosses.
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(1280 × 720 pixels), and 480p (640 × 480 pixels).
Both noise and lower resolution degrade tracking sys-

tems, as they can affect areas of high contrast, such as edges, 
corners, or changes in texture, which are typically used as 
salient features to track across frames. The aim of creating 
these versions is to analyze the impact of these parameters 
on tracking performance, both quantitatively and qualita-
tively. This determines the democratization of this technol-
ogy to the broader public, which might not have high-end 
equipment at their disposal, but rather lower-end, noise-
prone, and lower-resolution equipment.

Figures 5 & 6 illustrate different versions of a video creat-
ed at varying levels of Gaussian Noise and other resolutions.

Existing Camera Trackers
While the proprietary nature of AfterEffects16 and Blender17,18 

makes details on the inner workings of their tracking tools 
difficult to obtain, the available documentation describes 
models based on salient feature detection and optic flow 
tracking.

In Blender, the first frame of the video is analyzed to de-

First, the videos were created and versioned for testing. 
Then, the coordinates obtained from the different trackers 
were integrated into UE and exported in the proper format. 
Finally, the tracking systems were analyzed individually and 
in comparison, and the impact of different video parame-
ters was assessed qualitatively in UE.

Creating the Videos
Five videos were created as a test dataset for the experiments. 
Each video was taken with a duration of around 10 sec and 
had the same motion of walking down a street. All videos 
were recorded at 4K (3840 × 2160 pixels) so that the resolu-
tion could be degraded.

Figure 4 illustrates the motion of the videos, walking in a 
straight line down a path.

Using AfterEffects, Gaussian Noise30 was added to each 
video at 25%, 50%, and 75%. This means that for each per-
centage, the same proportion of random pixels in the video 
was selected and disturbed with random motion. Similarly, 
using Adobe’s Media Encoder, versions of each video were 
created in resolutions of 1080p (1920 × 1080 pixels), 720p 

FIGURE 3. Overview of the workflow followed by this research.

FIGURE 4. Frames taken from one of the videos in the dataset. All videos followed the same movement progression, starting with the top-left frame 
and ending with the bottom-right frame. The motion was a hand-held walk down a path.
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UE uses a left-handed, Z-axis up system. Very few systems 
follow this alignment, so when translating coordinates from 
these other systems to UE, a one-to-one x,y,z copy will cause 
errors.

In OpenCV,32 the camera’s principal axis is aligned with 
the Z-axis of the coordinate system and follows the right-
hand rule (where the Y-axis is oriented downward). This 
means x, y, z coordinates must be converted to -z, -x, y to align 
with the coordinate system in UE. An API capable of commu-
nicating with UE can be imported into Python to enable the 
OpenCV tracker to communicate with UE. The workflow for 

tect salient features, as shown in Fig. 7. The video is then an-
alyzed, tracking the motion of each marked feature through-
out.17,18

Likewise, AfterEffects16 analyzes the first frame for salient 
features and then tracks across the video.

Understanding Differences in Coordinate Systems
While the trackers (OpenCV, Blender, and AfterEffects) ren-
der coordinates in the same format as UE, integrating them 
into the virtual environment remains challenging due to dif-
ferences in Cartesian coordinate alignment.

FIGURE 5. The zoomed-in and cropped first frame of each version of a video with varying amounts of noise. 
On the top left, the original video with no added noise. In the top-right corner, Gaussian Noise was added 
to 25% of the pixels in the video. On the bottom left, Gaussian Noise was added to 50% of the pixels in the 
video. In the bottom-right corner, Gaussian Noise was added to 75% of the pixels in the video.

FIGURE 6. The first frame of each version of a video with varying resolution. From left to right, resolutions decrease from the original 4K to 1080p, 
then 720p, and lastly 480p.
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tracted from UE, offset to begin at the origin (0,0,0), and new 
machine-readable CSV files were created with these equal-
ized values.

Setting up Unreal Engine for a Qualitative Analysis of 
the Performance of Tracking Systems
For the qualitative analysis of the tracking systems and the 
effect of different video parameters on tracking perfor-
mance, a virtual scene is created in UE that includes ele-
ments matched to those in the source videos. As shown in 
Fig. 9, the right-hand trees are matched to the benches in the 
original scene from the source video. This aids in compar-
ing the fluidity of movement and the spatial accuracy of the 
track.

The scaling for the different tracking systems had to 
be adjusted proportionally to the magnitude of the vir-
tual scene to ensure the track matched the source videos 
in pace and displacement. All tracks were then exported 
from the UE sequencer and compared with the original 
videos to qualitatively assess the impact of different video 
parameters on tracking. This further assesses the democ-
ratization of the tracking technology by examining the op-
timal parameters for the seamless replication of motion in 
a virtual environment.

Results and Analysis
To determine whether a tracker built using OpenCV can 
meet the same standard as the other two trackers, their 
performances must be compared. Tables 1 and 2 show the 
mean error per frame and the standard deviation of track-
ing for the five videos, compared with tracking of versions 
of the same videos at different resolutions and with varying 
percentages of Gaussian noise added.

After inspecting the results affected by noise in Table 1, 

obtaining camera coordinates from the OpenCV tracker to 
UE is shown in Fig. 8.

Likewise, Blender uses the right-hand rule, but with Z 
pointing upward, a mirror image of the left-hand rule used 
by UE. AfterEffects exports the coordinates using the left-
hand rule, like UE, but with the Y-axis pointing upwards in-
stead of the Z-axis.

Extracting coordinates from UE to Equalize Coordi-
nates Across the Different Tracking Systems
For the AfterEffects and Blender tracking systems, detecting 
different features between videos means the selected ground 
planes/floor and origins used to orient the tracking might 
vary. Therefore, to make a fair comparison of the different 
tracking systems, the coordinates for each tracker were ex-

FIGURE 7. Blender Tracking Marker Schematics.31 

FIGURE 8. Steps taken to successfully plot coordinates obtained from the OpenCV tracker into Unreal Engine.

FIGURE 9. Example comparison of a source video (right) and a virtual scene with matching elements (left) to compare the tracking performance.
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er in range to those of the Blender tracker this time. For the 
OpenCV system, both average error per frame and standard 
deviation double when moving from 1080p to 720p. Results 
between 720p and 480p differ less noticeably, suggesting 
that once the tracker has reached a specific resolution, the 
rapid degradation of tracking performance levels out.

The progressive deterioration in the tracker’s performance 
as resolution decreases is less apparent in the Blender system. 
The expected pattern is not observed, with the least error 
obtained from the 720p video rather than the higher-reso-
lution 1080p. The changes between resolutions, however, 
amount to only ±4.5 pixels in the average standard deviation 
from the original videos. This would indicate that while the 
average error is slightly higher in the Blender tracker com-
pared to the OpenCV tracker, the actual impact between res-
olutions in Blender is far less noticeable.

The AfterEffects tracker behavior seems to resemble the 
OpenCV system more closely. The expected pattern of lower 
resolution negatively impacting the track’s performance is 
observed. Unlike the OpenCV tracker, the impact of resolu-
tion on this system’s performance is more evenly distributed, 
with approximately equal intervals (±2000 pixels) of increas-
ing average error as resolution decreases.

To further analyze the three systems, more specific exam-
ples can be examined.

OpenCV Tracker
The following examples are representative of the results ob-
tained across the dataset using the OpenCV tracker and are 
also proportional to those of the other tracking systems.

the OpenCV tracker achieved the lowest error across the data-
set. The mean error per frame for the OpenCV system was the 
lowest and the least spread across the three noise percent-
ages. This average error is more pronounced in the standard 
deviation of the tracking relative to the original, as predicted, 
with the track’s deviation increasing with the percentage of 
noise added to the videos. Even so, the OpenCV tracker con-
tinues to outperform the other two trackers in this aspect, too, 
with the average deviation from the original videos still not 
surpassing ±2 pixels in coordinates between noise percentage.

The tracking system from Blender also follows the trend 
of, on average, the highest percentage of noise render-
ing the most deviation from the original track. The aver-
age mean error per frame is much higher than that of the 
OpenCV tracker, and the differences across the three noise 
levels exceed ±10 pixels in coordinates, indicating greater 
sensitivity to noise in the tracker’s performance.

The AfterEffects tracker has the poorest performance 
overall. Its average mean error per frame across all noise 
percentages is over 100 times that of the OpenCV tracker 
and over 10 times that of the Blender tracker. This, however, 
might be due to different scaling and coordinate systems. 
While the pattern of the greatest noise percentage rendering 
the most significant error remains true, the average standard 
deviation almost doubles between 25% and 50% noise add-
ed, indicating the most significant impact of noise on the 
system’s tracking performance.

The results from changing resolutions in Table 2 show 
similar patterns. In this case, the OpenCV tracker continues 
to outperform the other two systems, but its results are clos-

Tracker % of Gaussian Noise	
added to video

Average Mean Error (pixels) 
across the dataset

Average Standard Deviation 
(pixels) across the dataset videos

OpenCV 25 16.7 7.96
50 18.8 8.02
75 16.2 10.41

Blender 25 100.7 66.5
50 90.54 54.4
75 112.8 75.5

AfterEffects 25 6273.28 3985.2
50 8574.82 5807.98
75 10473.43 7231.93

TABLE 1. Average Impact of Noise on the Performance of the Trackers.

Tracker Compared Video  
Resolution

Average Mean Error (pixels) 
across the dataset

Average Standard Deviation 
(pixels) across the dataset

OpenCV 480 SD 105.31 62.04
720 HD 99.94 60.16
1080 HD 55.42 27.5

Blender 480 SD 114.62 67.46
720 HD 94.24 62.96
1080 HD 100.68 64.06

AfterEffects 480 SD 8258.12 5476.3
720 HD 6968.68 4635.16
1080 HD 4529.96 3001.42

TABLE 2. Average Impact of Resolution on the Performance of the Trackers.
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Taking Video 1 as an example, Table 3 and Fig. 10 illus-
trate the OpenCV system’s performance under varying noise 
levels. The tracker maintains stable performance in the pres-
ence of noise, with the mean error remaining under 5 pixels 
across noise levels. The z-coordinate values are most affected 
at noise levels of 50% and 75%, changing from negative to 
positive, signaling a change in the direction of motion rela-
tive to the source.

Table 3 and Fig. 11 inspect the impact decreasing resolu-
tions have on the OpenCV system’s tracking when compared 
to the original Video 1. Examining the mean error per frame, 
the best tracking performance is achieved at 1080p, while 
lower resolutions yield significantly larger error values. Coor-
dinate x indicates the direction of motion, while y and z refer 
to side-to-side and up-down motion, respectively. Where the 
original 4K and 1080p resolutions show a positive increase in 
x, representing motion forward, the resolutions of 720p and 

FIGURE 10. Graphical representation of the effect Noise % had on x,y, and z coordinates for Video 1. The 
original 4K video is drawn in blue. Noise levels cause deviations from the original values, thus degrading the 
track’s accuracy.

Standard 
Video

% of Gaussian Noise 
added to video

Mean Error 
(pixels)

Standard Deviation 
(pixels)

Video 1 4K 25 14.7 6.42
50 10.4 3.78
75 13.9 5.87

TABLE 3. Performance Results of the OpenCV Tracking System on Dif-
ferent Noise % Versions of Video 1 Compared to the Source Video.

Standard 
Video

Compared video 
Resolution

Mean Error 
(pixels)

Standard Devia-
tion (pixels)

Video 1 4K 480 SD 99.0 61.1
720 HD 71.9 42.6
1080 HD 29.9 10.5

TABLE 4. Performance Results of the OpenCV Tracking System on Dif-
ferent Resolution Versions of Video 1 Compared to the Source Video.
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FIGURE 11. Graphical representation of the effect different Resolutions had on x,y, and z coordinates for 
video.

480p show a decrease in x, implying an opposite motion rel-
ative to the source.

1. �The original 4K video is drawn in blue; the lower  
resolutions cause deviation from the original values, 
thus degrading the accuracy of the track.

Assessing the Qualitative Impact of Noise and Resolu-
tion in Unreal Engine
The performance of the built OpenCV tracker was also 
evaluated in a virtual environment built in UE.

Figure 12 establishes the expected results by showcas-
ing how the first and last frames of the original version 
of Video 1 translated into the virtual environment in UE. 
In selecting a virtual scene, the aim was to match certain  
elements to the source video to better evaluate the cam-
era’s tracking by comparing their positions and distances 
in the beginning and end frames. In this case, the two trees 
on the left-hand side of the virtual environment frame 

were roughly matched to the two benches in similar posi-
tions from the original video.

Figures 13 & 14 show frames taken at the same times 
for each video version (noise-free and with 25%, 50%, and 
75% added noise). These two examples are taken at sec-
onds 2 (frame 100) and 6 (frame 300) of the 8-second video 
(400 frames). While there are differences throughout the 
versions 2 seconds in, these are much less noticeable than 
those from the frames 6 seconds into the video. The track-
ing differences worsen over time, causing the drift from 
the original track to increase as time goes by.

Much more drastic differences are observed when com-
paring the results for the 4K Video 1 track with those from 
the tracks performed at resolutions 1080p, 720p, and 480p.

Figure 15 illustrates the drastic negative impact of res-
olution on tracking performance by comparing frame 200 
across all video versions (original 4K resolution, 1080p, 
720p, and 480p). The disparity between frames and the 
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lack of resemblance to the original video suggest the drift-
ing away from the original track is noticeable and entire-
ly at odds with what the motion should be. The OpenCV 
tracker produces unusable results at resolutions below 4K.

Discussion
Both noise and resolution affect the performance of all 
trackers. Overall, however, trackers generally have low-
er error due to noise than to decreasing resolution. The 

OpenCV system seemed to outperform the other two 
trackers, consistently attaining the lowest mean error per 
frame and standard deviation relative to the original tracks 
across the dataset at different noise percentages and reso-
lutions, followed by Blender and, lastly, AfterEffects.

The analysis of the results also matches the track’s perfor-
mance for each version in UE. Using Video 1 as an example, 
noise at any level negatively affected the motion’s smooth-
ness but preserved the original trajectory. The differences 

FIGURE 12. A comparison of the first frame of Video 1 (top left) with that same frame in the virtual environment created in 
UE (top right). On the second row, the bottom-left image shows the last frame of the video, and the bottom-right image 
shows it in the virtual environment.

FIGURE 13. Frames taken at 2 seconds into Video 1 from the four versions. The noise-free version (top left), the version 
with 25% noise added before the track (top right), the version with 50% noise added before the track (bottom left), and the 
version with 75% noise added before the track (bottom right).
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appears that the tracking systems don’t latch onto individual 
pixels as tracking points, but rather select a group of pixels 
that form the salient feature. This technique prevents the loss 
of tracking elements due to noisy pixels, since in the chosen 
area, the probability that all pixels are noisy is reduced (un-
less 100% of the pixels in a video are noisy). This would also 
explain why, while still having an impact on the track, the 
average mean-error per frame and standard deviation from 
the original render lower results compared to the changes 

in tracking between videos at different noise levels were 
minimal in the virtual environment. This suggests that the 
OpenCV tracking system is resilient to high levels of noise in 
a video during tracking and proves that while noise might 
hinder the quality of a track, the results are still usable, albeit 
prone to sporadic bursts of abrupt movement.

The noise-infused pixels disturb salient features, such as 
edges or areas of high contrast, that tracking systems latch 
onto to perform tracking and solve the camera motion. It 

FIGURE 14. Frames taken at 6 seconds into Video 1 from the four versions. The noise-free version (top left), the version 
with 25% noise added before the track (top right), the version with 50% noise added before the track (bottom left), the 
version with 75% noise added before the track (bottom right).

FIGURE 15. Frames taken at 4 seconds into Video 1 from the four versions. 4K version (top left), the version at resolution 1080p 
(top right), the version at resolution 720p (bottom left), the version at resolution 480p (bottom right). No frame is the same; the 
differences are noticeable, suggesting that all the tracks have drifted drastically away from the original trajectory.
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Jain et al.33 found similar issues in their research, where 
lower video resolutions increased the system’s processing 
rate but reduced track accuracy. To overcome this, Svans-
tröm et al.34 found that tracking with visible thermal and 
acoustic markers yielded good performance even at lower 
resolutions. While marker-based tracking systems are more 
expensive to set up and maintain and thus less accessible to 
the broader public, it would be beneficial to explore this tech-
nology to better understand how the problem of resolution 
might be addressed.

Investigating the democratization of Real-time Camera 
Tracking Technologies
It would be interesting to expand the scope of this research 
further by assessing the democratization of real-time cam-
era tracking techniques. The best approach might be to ex-
amine the implementation of Simultaneous Localization 
and Mapping (SLAM) techniques, which create a map of the 
camera’s environment as it tracks its own position within it.

As proposed by Salas et al.,35 the use of 3D object detec-
tion and recognition, rather than just salient features, can be 
paired with SLAM models to improve the mapping and track-
ing of elements in a virtual scene in real-time. This approach 
would, however, be better suited to scenes with repeated ele-
ments, which might not always be the case in general public 
use. Ullah et al.36 suggest a different approach using Kalman 
Filters, for which OpenCV provides dedicated tools. This 
would allow the camera’s localization to be more accurately 
determined in unknown environments.

Unfortunately, these systems often use Deep Neural Net-
works (DNNs), which require large-scale datasets and thus 
fall beyond the scope of what is available to the general pub-
lic. As the research in this area progresses, however, it might 
be possible to adapt these systems into less computationally 
demanding models, thereby further democratizing camera 
tracking technology.

Conclusion
Computer vision is an ever-growing field with many useful 
applications. By analyzing, processing, and solving the mo-
tion in a video, camera tracking techniques can be developed 
for VR, AR, and VP. This inspires continued research in the 
field to understand better and manipulate the technology. 
This project aimed to determine the full range of the democ-
ratization of this technology by posing three objectives.

The results illustrate the success of the tracker built with 
open-source tools in competing with industry-standard 
tools. To determine the optimal parameters for noise and 
resolution to achieve good tracking performance, the results 
show that both noise and resolution hinder the efficiency of 
the tracking systems. Further inspection revealed that, in 
general, tracking systems could still produce useful tracking 
results in the presence of noise, but struggled quite acutely at 
lower resolutions. Therefore, this limits the democratization 
of tracking technology to equipment available to the broad-
er public, which can achieve higher resolutions. Lastly, the 
practical impact of noise and resolution in a virtual scenar-
io was assessed. This examination further determined that 

in resolution. The areas selected as tracking points contain 
enough pixels to be tracked with almost the same success as 
a noiseless video.

Decreasing the resolution also worsened the trackers’ 
performance. The OpenCV tracker seemed to be relative-
ly the most affected by resolution. In contrast, Blender 
and AfterEffects both maintained error values closer to 
the same range as those obtained by varying amounts 
of noise. This is perhaps because the areas that OpenCV 
needs to track contain more pixels. As previously dis-
cussed, this would make them more resilient to noise but 
would be negatively impacted by a reduction in resolu-
tion. Lower resolutions mean fewer pixels available to dis-
play the information in the image. This disrupts the detail 
in salient features, and if the areas tracked by OpenCV 
remain fixed in size, the same number of pixels in a low-
er-resolution image would encompass a larger area. This 
would imply a loss of detail in the features to be tracked, 
since within the same area, there can be overlapping 
points of interest that introduce errors into tracking. In 
the AfterEffects and Blender tracking systems, the mark-
ers used, as shown in Fig. 7, appeared physically larger 
on the screen, thus appearing to encapsulate relatively 
larger areas, but in reality, these were scaled due to the 
lower resolutions. The way these two other systems com-
pensated for this was to reduce the number of markers 
used, effectively selecting less salient features, to avoid 
confusing overlapping areas that might induce error in 
the tracker. This allowed these two systems to maintain 
their errors within a similar range to the noise, while still 
suffering from lower resolution.

It can be stated that both noise and resolution affect 
tracking, with both parameters degrading track perfor-
mance. This would limit the extent of the democratization 
of the tracking technology. The extent of the impact of these 
parameters on tracking performance, however, can vary de-
pending on the tracking system and the measures in place to 
limit the effect of the error.

Further Research
The following section will propose future research areas to 
deepen the understanding of camera tracking technologies 
and help overcome their limitations.

Improving the Performance of Trackers in Lower  
Resolutions
The results in Section 3 indicate that the OpenCV tracker 
struggled to a greater extent at low video resolutions than 
with noise, whereas the other two tracking systems appear to 
maintain similar error ranges across both parameters.

It was theorized that this was due to the number of pixels 
per tracking point used by the OpenCV system. If this amount 
is consistent across all resolutions, it would lead to overlapping 
tracking points, rendering contradictory analyses of motion. 
Therefore, following the systems of the other two trackers, one 
possible solution to this issue is to develop a model in which 
the number of tracking points detected and used decreases 
with resolution, thus avoiding the damaging overlap.
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while videos affected by noise could still render usable out-
comes in virtual scenes, those with lower resolutions strug-
gled to perform well.

In conclusion, while there are still limitations to the full 
democratization of camera tracking systems, tools and re-
sources are available for the public to experiment and push 
the boundaries of small-scale productions. Continued re-
search into tracking systems will further encourage their de-
velopment and aid their democratization.
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