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Abstract

Real-world videos often exhibit overlapping events and
intricate temporal dependencies, posing significant chal-
lenges for effective multimodal interaction modeling. We
introduce DEL, a framework for dense semantic action lo-
calization, aiming to accurately detect and classify mul-
tiple actions at fine-grained temporal resolutions in long
untrimmed videos. DEL consists of two key modules: the
alignment of audio and visual features, which leverages
masked self-attention to enhance intra-mode consistency,
and a multimodal interaction refinement module that mod-
els cross-modal dependencies across multiple scales, en-
abling both high-level semantics and fine-grained details.
We report results on multiple real-world Temporal Action
Localization (TAL) datasets, UnAV-100, THUMOS14, Ac-
tivityNet 1.3, and EPIC-Kitchens-100. The source code
will be made publicly available. These advances enable
more accurate analysis of complex, real-world scenes, from
surveillance to accessible media understanding.

1. Introduction
Temporal action localization (TAL) involves identifying
and classifying action boundaries in untrimmed videos, a
task made difficult by varying action durations and over-
laps [28]. Real-world video understanding is inherently
multimodal, requiring both visual and auditory cues [11,
21, 22]. For instance, distinguishing speech from silent
mouthing is challenging using visuals alone, but can be re-
solved with audio input. Although audio and visual modal-
ities are complementary, their fusion is non-trivial due to
temporal misalignment, diverse event durations, and intri-
cate cross-modal interactions [27]. Prior work in Audio-
Visual Event Localization (AVE) has largely focused on
trimmed videos with single events [7, 23, 29], whereas
dense localization requires detecting all overlapping events
across varying durations in untrimmed videos [1, 4, 8, 10].
Recent TAL models leverage transformers and Feature
Pyramid Networks (FPN) for multi-scale visual reason-
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Figure 1. Real-world videos often feature overlapping events of
different lengths, making localization difficult. This image com-
pares ground-truth (GT) with predictions from DEL, an audio-only
model (A), and a visual-only model (V). While A and V struggle
with a specific category, DEL accurately detects both short and
long events, even when overlapping.

ing [25, 31, 34, 37], but often neglect audio. A key chal-
lenge in audio-visual event localization is fusing multi-
modal information when events co-occur. Existing meth-
ods often process audio and visual streams independently
or apply late fusion, limiting their ability to capture fine-
grained temporal dependencies. Moreover, reliance on pre-
trained feature extractors introduces misalignment due to
domain gaps and differing objectives. While contrastive
learning aids cross-modal alignment, most methods over-
look intra-video structure, such as temporal coherence and
cross-event correlations, which are vital for distinguishing
similar events across time.

To address these issues, we propose DEL, a novel
transformer-based framework that explicitly models cross-
modal dependencies while preserving fine-grained tempo-
ral structure. DEL employs multi-scale fusion to support
robust localization in densely overlapping scenarios. Two
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Figure 2. Overview of our proposed DEL framework. Our model integrates (1) an adaptive attention mechanism for aligning audio and
visual features, (2) inter- and intra-sample contrastive learning to enhance event discrimination, and (3) a multi-scale path aggregation
network for feature fusion. ∥ represents the concatenation operation.

key modules underpin our approach: (1) a multimodal
adaptive attention mechanism using masked self-attention
to ensure temporal coherence and intra-modal consistency,
and (2) a path aggregation network that captures both
fine-grained and high-level temporal semantics. We fur-
ther introduce a dual contrastive loss: intra-sample contrast
enhances feature discrimination within modalities, while
inter-sample contrast improves cross-modal alignment. A
feature scoring mechanism automatically selects contrastive
pairs, removing the need for manual sampling and improv-
ing training efficiency.

2. Related Works
Deep learning has driven advances in temporal action lo-
calization (TAL), enabling accurate detection of actions
in untrimmed videos. TAL methods include two-stage
approaches [14, 15], which first generate proposals, and
single-stage methods that predict actions directly. Our work
builds on the latter for efficiency. Within this context,
anchor-based methods [3, 38] rely on predefined tempo-
ral regions, whereas anchor-free techniques [20, 35] di-
rectly regress event boundaries. Recent models integrate
GNNs [36] and Transformers [30], with transformer-based
FPNs [37] improving multi-scale temporal reasoning and
localization. Audio-visual fusion has shown promise in
video retrieval [12], but remains underexplored in TAL due
to challenges like modality misalignment and asynchronous
events [27]. Most methods employ late fusion, which limits
fine-grained temporal modeling. While recent methods ex-
plore cross-attention [17, 33] they often fall short in model-
ing dynamic, multi-scale interactions critical for real-world
event understanding. Contrastive learning [9] helps align
modalities but typically ignores intra-video structure. In
contrast, our DEL framework captures cross-modal depen-
dencies via adaptive attention and multi-scale

3. Method Overview
Figure 2 illustrates the DEL framework for dense audio-
visual event localization in untrimmed videos. Given to-
kenized audio-visual input, our method proceeds via three
modules: (1) Adaptive Attention for dynamic cross-modal
alignment; (2) Score-based Contrastive Learning to en-
hance feature discrimination; and (3) a Path Aggregation
Network for robust multi-scale temporal fusion.
Problem Formulation
Given a video segmented into T audio-visual pairs S =
{(Vt,At)}T

t=1, where Vt and At represent visual and audio
features at time t, we aim to predict localized events:

Ŝ= {ŝt = (δstart,t ,δend,t ,q(yt))}T
t=1,

where q(yt) ∈ [0,1]|Λ| is the event classification probabil-
ity for Λ, the set of all event classes, and δstart,t ,δend,t are
temporal offsets. The final predictions are:

τ̂start,t = t−δstart,t , τ̂end,t = t+δend,t , λ̂t = argmax
λ∈Λ

q(λt).

Adaptive Cross-Modal Attention
To effectively align temporally offset audio and visual sig-
nals, we employ an attention-based mechanism with learn-
able masking M∈R(Lv+La)×(Lv+La), where Lv and La denote
the lengths of the visual and audio sequences, respectively.
Given concatenated input X = [V|A] ∈R(Lv+La)×d , where d
is the embedding dimension, we compute attention as:

aati, j =
mi, j exp(QiK⊤

j /
√

d)

∑k mi,k exp(QiK⊤
k /

√
d)

,

with Q,K derived from linear projections of X. The mask
guides both intra- and inter-modal alignment across tempo-
rally corresponding features.
Score-Based Contrastive Learning To improve event dis-
crimination and modality alignment, we adopt a dual con-
trastive loss that operates both across and within video sam-
ples.



• Inter-sample loss aligns [CLSV ] and [CLSA] tokens
across paired samples.

• Intra-sample loss leverages token-level predic-
tions—event score st and category ct—to mine positive
and hard-negative samples within a video.
The contrastive loss encourages alignment between cor-

rectly predicted segments and penalizes ambiguous ones:

ℓ(z,z+,z−) =− log
(

exp(z⊤z+/τ)

exp(z⊤z+/τ)+∑k exp(z⊤z−k /τ)

)
,

where τ is a learnable temperature parameter.
Path Aggregation Network
To capture events of varying durations, we build a multi-
scale feature pyramid. Modality-guided adapters integrate
cross-modal cues:

V ′
l =Vl ·σ

(
max

j
(VlA⊤

j )

)⊤
, A′

l =Al ·σ
(

max
k

(AlV⊤
k )

)⊤
,

where σ is the sigmoid activation function. These updated
features are fused across scales and refined via multi-head
attention (MHA):

V ′ =V +MHA(V, Ã, Ã), A′ = A+MHA(A,Ṽ ,Ṽ ),

where Ã,Ṽ denote compact multi-scale tokens obtained via
adaptive pooling.
Overall Objective Function The final loss combines con-
trastive and supervised objectives: Linter and Lintra, and the
score cross entropy loss Lscore. Additionally, the classifica-
tion head is trained using a cross-entropy loss, Lcls, which
ensures accurate event categorization, while the regression
head is optimized with a smooth L1 loss, Lreg, to refine the
temporal boundaries of each detected event:
LDEL = λ1Linter +λ2Lintra +λ3Lscore +λ4Lcls +λ5Lreg,

with weights λi balancing each term.

4. Experiments
Dataset and Metrics We evaluate DEL on four bench-
marks: THUMOS14 [10], ActivityNet-1.3 [1], EPIC-
Kitchens-100 [4], and UnAV-100 [8]. Following standard
practice, we report mean Average Precision (mAP) across
multiple temporal IoU thresholds. To ensure statistical ro-
bustness, all results are averaged over five training runs.
Feature Encoder. For THUMOS14, ActivityNet, and
UnAV-100, we adopt I3D [2], pretrained on Kinetics-400,
for visual features, and VGGish [7], pretrained on Au-
dioSet, for audio features. For EPIC-Kitchens-100, where
fine-grained temporal resolution is critical, we follow [24,
37] in using SlowFast [5] pretrained on EPIC-Kitchens. All
features are projected to a shared embedding space.

4.1. Main Results
THUMOS14. Tab. 1 shows that DEL achieves an average
mAP of 71.9%, outperforming TriDet by +2.6%. DEL ex-
cels at higher tIoU thresholds, achieving 68.4% at 0.6 and
60.5% at 0.7, indicating strong temporal precision.

Method 0.3 0.4 0.5 0.6 0.7 Avg
MUSES [18] 68.9 64.0 56.9 46.3 31.0 -
ContextLoc [39] 68.3 63.8 54.3 41.8 26.2 50.9
A2Net [35] 58.6 54.1 45.5 32.5 17.2 41.6
PBRNet [16] 58.5 54.6 51.3 41.8 29.5 -
AFSD [13] 67.3 62.4 55.5 43.7 31.1 52.0
TadTR [19] 62.4 57.4 49.2 37.8 26.3 46.6
Actionformer [37] 82.1 77.8 71.0 59.4 43.9 67.9
ASL [24] 83.1 79.0 71.7 59.7 45.8 66.8
TMaxer+MRAVFF [6] 82.2 78.2 71.5 59.9 45.3 67.4
TriDet [26] 83.6 80.1 72.9 62.4 47.4 69.3

DEL 81.0 78.0 71.8 68.4 60.5 71.9

Table 1. Performance comparison on THUMOS14 We report
mAP across multiple tIoU thresholds and compute the average
mAP. Our method outperforms previous approaches on THU-
MOS14 with the same feature extraction.

ActivityNet-1.3. As shown in Tab. 2, DEL achieves the
best overall performance with an average mAP of 38.0%,
improving upon TriDet by +1.2%. The performance gains
across all thresholds show that DEL generalizes well to di-
verse and long-form activities.

Method 0.5 0.75 0.95 Avg
MUSES [18] 50.0 35.0 6.6 34.0

ContextLoc [39] 56.0 35.2 3.6 34.2
VSGN [38] 52.3 35.2 8.3 34.7
A2Net [35] 43.6 28.7 3.7 27.8

PBRNet [16] 54.0 35.0 9.0 35.0
AFSD [13] 52.4 35.3 6.5 34.4
TadTR [19] 49.1 32.6 8.5 32.3

Actionformer [37] 53.5 36.2 8.2 35.6
ASL [24] 54.1 37.4 8.0 36.2

TriDet [26] 54.7 38.0 8.4 36.8

DEL 56.9 42.5 14.7 38.0

Table 2. Performance evaluation on ActivityNet 1.3. We present
mAP and average mAP results across various tIoU thresholds. Our
approach surpasses previous methods with the same feature ex-
traction.

EPIC-Kitchens-100. Tab. 3 presents results on this fine-
grained kitchen activity dataset. Using I3D+VGGish, DEL
achieves 27.1% (verb) and 25.2% (noun) average mAP. Us-
ing stronger features (VMAE2+ASlowFast), DEL achieves
30.5% and 28.1%, outperforming all baselines, includ-
ing TIM. These gains highlight DEL’s capability to han-
dle densely overlapping, fine-grained actions—particularly
those with subtle audio-visual interplay.
UnAV-100. In Tab. 4, DEL achieves 51.1% average mAP,
outperforming the UnAV baseline by +3.3%. Its perfor-
mance improves consistently with increasing tIoU thresh-
olds, showing accurate boundary localization even in over-
lapping audio-visual scenarios.

4.2. Ablation Experiments
We conduct ablations on UnAV-100, a challenging dataset
with dense, overlapping audio-visual events. We evaluate
the impact of key components, feature extractors, fusion de-
sign, and input modalities.



Task Method Frozen Features 0.1 0.2 0.3 0.4 0.5 Avg

BMN [15] I3D+VGGish 10.8 8.8 8.4 7.1 5.6 8.4
G-TAD [32] I3D+VGGish 12.1 11.0 9.4 8.1 6.5 9.4

Verb ActionFormer [37] I3D+VGGish 26.6 25.4 24.2 22.3 19.1 23.5
ASL [24] I3D+VGGish 27.9 - 25.5 - 19.8 24.6

ActionFormer + MRAV-FF [6] I3D+VGGish 27.6 26.8 25.3 23.4 19.8 24.6
TriDet [26] I3D+VGGish 28.6 27.4 26.1 24.2 20.8 25.4

TIM VMAE2+ASlowFast 32.9 31.6 29.6 27.0 22.2 28.6

DEL I3D+VGGish 32.2 29.9 27.8 25.1 20.8 27.1
DEL VMAE2+ASlowFast 35.1 33.6 31.5 28.8 23.5 30.5

BMN [15] I3D+VGGish 10.3 8.3 6.2 4.5 3.4 6.5
G-TAD [32] I3D+VGGish 11.0 10.0 8.6 7.0 5.4 8.4

Noun ActionFormer [37] I3D+VGGish 25.2 24.1 22.7 20.5 17.0 21.9
ASL [24] I3D+VGGish 26.0 - 23.4 - 17.7 22.6

ActionFormer + MRAV-FF [6] I3D+VGGish 26.4 25.4 23.6 21.2 17.4 22.8
TriDet [26] I3D+VGGish 27.4 26.3 24.6 22.2 18.3 23.8

TIM VMAE2+ASlowFast 36.4 34.8 32.1 28.7 22.7 31.0

DEL I3D+VGGish 29.5 28.4 26.2 22.9 19.3 25.2
DEL VMAE2+ASlowFast 33.1 31.3 29.3 26.1 20.8 28.1

Table 3. Performance on the EPIC-Kitchens-100 validation set
across multiple tIoU thresholds, with average mAP reported. Our
method outperforms all baselines by a significant margin using the
same feature extraction.

Method 0.5 0.6 0.7 0.8 0.9 Avg

VSGN [38] 24.5 20.2 15.9 11.4 6.8 24.1
TadTR [19] 30.4 27.1 23.3 19.4 14.3 29.4

ActionFormer [37] 43.5 39.4 33.4 27.3 17.9 42.2
UnAV [8] 50.6 45.8 39.8 32.4 21.1 47.8

DEL 53.4 48.1 42.6 35.6 26.9 51.1

Table 4. Performance on the UnAV-100 test set, showcasing
our method’s significant improvement over all baselines using the
same feature extraction. We report mAP and average mAP at var-
ious tIoU thresholds.

Component Analysis. Table 5 shows the impact of re-
moving our core modules: Adaptive Attention for Cross-
modal Alignment (AAC), Score-based Contrastive Learn-
ing (SCL), and the Path Aggregation Network (PAN). Re-
moving any component leads to a notable drop in perfor-
mance, confirming their complementary contributions to ro-
bust localization.

AAC SCL PAN 0.5 0.6 0.7 0.8 0.9 Avg

× ✓ ✓ 51.1 45.7 41.0 34.5 25.8 49.6
✓ × ✓ 51.5 44.7 38.7 33.3 25.8 49.7
✓ ✓ × 51.3 45.0 39.4 33.8 25.3 49.5
✓ ✓ ✓ 53.4 48.1 42.6 35.6 26.9 51.1

Table 5. Component-wise ablation study, evaluating the in-
dividual contributions of our proposed Adaptive Attention for
Cross-Modal Alignment (AAC), Score-Based Contrastive Learn-
ing (SCL), and Path Aggregation Network for Multi-Scale Feature
Fusion (PAN) modules.

Feature Pyramid Depth. Table 6 examines the number of
temporal pyramid levels L. Six levels yield the best perfor-
mance, capturing both fine- and coarse-scale cues. Fewer
levels limit context modeling, while more introduce redun-
dancy.
Feature Extractor Choice. In Tab. 7, we evaluate DEL
with alternative encoders: DINOv2 for video and MERT for
audio. This setup improves mAP by +1.4 (UnAV-100) and
+1.3 (THUMOS14), showing that DEL generalizes across

L 0.5 0.6 0.7 0.8 0.9 Avg

1 47.5 42.7 37.3 30.6 22.0 45.5
2 48.5 43.2 37.7 31.2 23.0 46.4
4 48.4 43.5 38.2 32.0 23.5 47.2
6 53.4 48.1 42.6 35.6 26.9 51.1
7 51.0 45.9 40.1 33.9 24.6 49.0

Table 6. Ablation study on the design of the feature pyramid. L
shows the number of layers for both audio and video.

feature types.

Features 0.3 0.4 0.5 0.6 0.7 Avg

THUMOS14

I3D+Vggish 81.0 78.0 71.8 68.4 60.5 71.9
DINOv2+MERT 81.5 79.1 73.1 70.8 64.6 73.3

UnAV-100

I3D+Vggish 53.4 48.1 42.6 35.6 26.9 51.1
DINOv2+MERT 55.0 49.7 44.1 37.4 28.4 52.7

Table 7. Evaluation on THUMOS14 and UnAV-100 incorporating
DINOv2 for video features and MERTv1 for audio features.

Modal Input Analysis. Table 8 compares DEL with visual-
only and audio-only variants. Using both modalities im-
proves average mAP by +13.2 (UnAV-100), +2.1 (THU-
MOS14), and +2.1 (EPIC-Verbs), confirming the critical
role of audio-visual fusion.

Data Video Audio 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 0.95 Avg

2*THUMOS14 ✓ × - - 79.9 76.8 70.7 67.6 59.7 - - - - 70.8
✓ ✓ - - 81.0 78.0 71.8 68.4 60.5 - - - - 71.9

2*ActivityNet 1.3 ✓ × - - - - 53.7 - - 40.1 - - 13.8 35.8
✓ ✓ - - - - 56.9 - - 42.5 - - 14.7 38.0

2*EPIC-Kitchens-100 (Verb) ✓ × 30.9 28.7 26.6 24.1 20.1 - - - - - - 26.0
✓ ✓ 32.2 29.9 27.8 25.1 20.8 - - - - - - 27.1

2*EPIC-Kitchens-100 (Noun) ✓ × 28.0 27.0 24.9 21.6 18.5 - - - - - - 23.9
✓ ✓ 29.5 28.4 26.2 22.9 19.3 - - - - - - 25.2

Table 8. DEL performance with various modality combinations.
Fusing audio and video yields the best results, emphasizing the
importance of multi-modal input.

5. Conclusion
We presented DEL, a dense audio-visual event localiza-
tion framework for untrimmed videos. By combining adap-
tive attention with a dual contrastive learning strategy, DEL
effectively aligns audio and visual streams while mod-
eling fine-grained temporal dependencies. A multi-scale
path aggregation network further enhances cross-modal fu-
sion. DEL achieves state-of-the-art results across four
challenging benchmarks—UnAV-100, THUMOS14, Ac-
tivityNet 1.3, and EPIC-Kitchens-100—demonstrating its
ability to localize overlapping events with high precision.
DEL narrows the gap between controlled benchmark tasks
and the complexity of real-world audiovisual scenarios,
offering a strong foundation for downstream applications
such as accessibility tools and intelligent video summariza-
tion.



References
[1] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem,

and Juan Carlos Niebles. Activitynet: A large-scale video
benchmark for human activity understanding. In Proceed-
ings of the ieee conference on computer vision and pattern
recognition, pages 961–970, 2015. 1, 3

[2] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6299–6308, 2017. 3

[3] Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan Sey-
bold, David A Ross, Jia Deng, and Rahul Sukthankar. Re-
thinking the faster r-cnn architecture for temporal action
localization. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1130–1139,
2018. 2

[4] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Antonino Furnari, Evangelos Kazakos, Jian Ma, Davide
Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al.
Rescaling egocentric vision: Collection, pipeline and chal-
lenges for epic-kitchens-100. International Journal of Com-
puter Vision, pages 1–23, 2022. 1, 3

[5] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 6202–6211, 2019. 3

[6] Edward Fish, Jon Weinbren, and Andrew Gilbert. Multi-
resolution audio-visual feature fusion for temporal action lo-
calization. arXiv preprint arXiv:2310.03456, 2023. 3, 4

[7] Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren
Jansen, Wade Lawrence, R Channing Moore, Manoj Plakal,
and Marvin Ritter. Audio set: An ontology and human-
labeled dataset for audio events. In 2017 IEEE interna-
tional conference on acoustics, speech and signal processing
(ICASSP), pages 776–780. IEEE, 2017. 1, 3

[8] Tiantian Geng, Teng Wang, Jinming Duan, Runmin Cong,
and Feng Zheng. Dense-localizing audio-visual events in
untrimmed videos: A large-scale benchmark and baseline.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 22942–22951, 2023.
1, 3, 4

[9] Xixi Hu, Ziyang Chen, and Andrew Owens. Mix and local-
ize: Localizing sound sources in mixtures. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10483–10492, 2022. 2

[10] Haroon Idrees, Amir R Zamir, Yu-Gang Jiang, Alex Gorban,
Ivan Laptev, Rahul Sukthankar, and Mubarak Shah. The
thumos challenge on action recognition for videos “in the
wild”. Computer Vision and Image Understanding, 155:1–
23, 2017. 1, 3

[11] Licheng Jiao, Yuhan Wang, Xu Liu, Lingling Li, Fang Liu,
Wenping Ma, Yuwei Guo, Puhua Chen, Shuyuan Yang, and
Biao Hou. Causal inference meets deep learning: A compre-
hensive survey. Research, 7:0467, 2024. 1

[12] Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman, and
Dima Damen. Epic-fusion: Audio-visual temporal bind-
ing for egocentric action recognition. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 5492–5501, 2019. 2

[13] Chuming Lin, Chengming Xu, Donghao Luo, Yabiao Wang,
Ying Tai, Chengjie Wang, Jilin Li, Feiyue Huang, and Yan-

wei Fu. Learning salient boundary feature for anchor-
free temporal action localization. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 3320–3329, 2021. 3

[14] Tianwei Lin, Xu Zhao, Haisheng Su, Chongjing Wang, and
Ming Yang. Bsn: Boundary sensitive network for temporal
action proposal generation. In Proceedings of the European
conference on computer vision (ECCV), pages 3–19, 2018. 2

[15] Tianwei Lin, Xiao Liu, Xin Li, Errui Ding, and Shilei Wen.
Bmn: Boundary-matching network for temporal action pro-
posal generation. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 3889–3898,
2019. 2, 4

[16] Qinying Liu and Zilei Wang. Progressive boundary refine-
ment network for temporal action detection. In Proceed-
ings of the AAAI conference on artificial intelligence, pages
11612–11619, 2020. 3

[17] Shuo Liu, Weize Quan, Chaoqun Wang, Yuan Liu, Bin Liu,
and Dong-Ming Yan. Dense modality interaction network
for audio-visual event localization. IEEE Transactions on
Multimedia, 25:2734–2748, 2022. 2

[18] Xiaolong Liu, Yao Hu, Song Bai, Fei Ding, Xiang Bai, and
Philip HS Torr. Multi-shot temporal event localization: a
benchmark. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12596–
12606, 2021. 3

[19] Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Shiwei
Zhang, Song Bai, and Xiang Bai. End-to-end temporal ac-
tion detection with transformer. IEEE Transactions on Image
Processing, 31:5427–5441, 2022. 3, 4

[20] Sauradip Nag, Xiatian Zhu, Yi-Zhe Song, and Tao Xiang.
Proposal-free temporal action detection via global segmen-
tation mask learning. In European Conference on Computer
Vision, pages 645–662. Springer, 2022. 2

[21] Arsha Nagrani, Shan Yang, Anurag Arnab, Aren Jansen,
Cordelia Schmid, and Chen Sun. Attention bottlenecks for
multimodal fusion. Advances in neural information process-
ing systems, 34:14200–14213, 2021. 1

[22] Andrew Owens and Alexei A Efros. Audio-visual scene
analysis with self-supervised multisensory features. In Pro-
ceedings of the European conference on computer vision
(ECCV), pages 631–648, 2018. 1

[23] Arjun Prashanth, SL Jayalakshmi, and R Vedhapriyavad-
hana. A review of deep learning techniques in audio event
recognition (aer) applications. Multimedia Tools and Appli-
cations, 83(3):8129–8143, 2024. 1

[24] Jiayi Shao, Xiaohan Wang, Ruijie Quan, Junjun Zheng, Jiang
Yang, and Yi Yang. Action sensitivity learning for temporal
action localization. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 13457–13469,
2023. 3, 4

[25] Dingfeng Shi, Qiong Cao, Yujie Zhong, Shan An, Jian
Cheng, Haogang Zhu, and Dacheng Tao. Temporal action
localization with enhanced instant discriminability. arXiv
preprint arXiv:2309.05590, 2023. 1

[26] Dingfeng Shi, Yujie Zhong, Qiong Cao, Lin Ma, Jia Li, and
Dacheng Tao. Tridet: Temporal action detection with relative
boundary modeling. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
18857–18866, 2023. 3, 4



[27] Yapeng Tian, Jing Shi, Bochen Li, Zhiyao Duan, and Chen-
liang Xu. Audio-visual event localization in unconstrained
videos. In Proceedings of the European conference on com-
puter vision (ECCV), pages 247–263, 2018. 1, 2

[28] Elahe Vahdani and Yingli Tian. Deep learning-based action
detection in untrimmed videos: A survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 45(4):4302–
4320, 2022. 1

[29] Satvik Venkatesh, David Moffat, and Eduardo Reck Mi-
randa. You only hear once: a yolo-like algorithm for audio
segmentation and sound event detection. Applied Sciences,
12(7):3293, 2022. 1

[30] Lining Wang, Haosen Yang, Wenhao Wu, Hongxun Yao,
and Hujie Huang. Temporal action proposal generation with
transformers. arXiv preprint arXiv:2105.12043, 2021. 2

[31] Yuetian Weng, Zizheng Pan, Mingfei Han, Xiaojun Chang,
and Bohan Zhuang. An efficient spatio-temporal pyramid
transformer for action detection. In European Conference on
Computer Vision, pages 358–375. Springer, 2022. 1

[32] Mengmeng Xu, Chen Zhao, David S Rojas, Ali Thabet, and
Bernard Ghanem. G-tad: Sub-graph localization for tempo-
ral action detection. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
10156–10165, 2020. 4

[33] Cheng Xue, Xionghu Zhong, Minjie Cai, Hao Chen, and
Wenwu Wang. Audio-visual event localization by learning
spatial and semantic co-attention. IEEE Transactions on
Multimedia, 25:418–429, 2021. 2

[34] Ceyuan Yang, Yinghao Xu, Jianping Shi, Bo Dai, and Bolei
Zhou. Temporal pyramid network for action recognition. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 591–600, 2020. 1

[35] Le Yang, Houwen Peng, Dingwen Zhang, Jianlong Fu, and
Junwei Han. Revisiting anchor mechanisms for temporal ac-
tion localization. IEEE Transactions on Image Processing,
29:8535–8548, 2020. 2, 3

[36] Runhao Zeng, Wenbing Huang, Mingkui Tan, Yu Rong,
Peilin Zhao, Junzhou Huang, and Chuang Gan. Graph con-
volutional networks for temporal action localization. In Pro-
ceedings of the IEEE/CVF international conference on com-
puter vision, pages 7094–7103, 2019. 2

[37] Chen-Lin Zhang, Jianxin Wu, and Yin Li. Actionformer: Lo-
calizing moments of actions with transformers. In European
Conference on Computer Vision, pages 492–510. Springer,
2022. 1, 2, 3, 4

[38] Chen Zhao, Ali K Thabet, and Bernard Ghanem. Video self-
stitching graph network for temporal action localization. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 13658–13667, 2021. 2, 3, 4

[39] Zixin Zhu, Wei Tang, Le Wang, Nanning Zheng, and Gang
Hua. Enriching local and global contexts for temporal action
localization. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 13516–13525, 2021. 3


	Introduction
	Related Works
	Method Overview
	Experiments
	Main Results
	Ablation Experiments

	Conclusion

