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Figure 1: DECORAIT enables creatives to register consent (or not) for Generative AI training using their content, as well as to
receive recognition and reward for that use. Provenance is traced via visual matching, and consent and ownership registered
using a distributed ledger (blockchain). Here, a synthetic image is generated via the Dreambooth[Ruiz et al. 2022] method
using prompt "a photo of [Subject]" and concept images (left). The red cross indicates images whose creatives have opted out
of AI training via DECORAIT, which when taken into account leads to a significant visual change (right). DECORAIT also
determines credit apportionment across the opted-in images and pays a proportionate reward to creators via crypto-currency
micropyament.

ABSTRACT
We present DECORAIT; a decentralized registry through which
content creators may assert their right to opt in or out of AI training
and receive rewards for their contributions. Generative AI (GenAI)
enables images to be synthesized using AI models trained on vast
amounts of data scraped from public sources. Model and content cre-
ators whomay wish to share their work openly without sanctioning
its use for training are thus presented with a data governance chal-
lenge. Further, establishing the provenance of GenAI training data
is important to creatives to ensure fair recognition and reward for
their such use.We report a prototype of DECORAIT, which explores
hierarchical clustering and a combination of on/off-chain storage to
create a scalable decentralized registry to trace the provenance of
GenAI training data to determine training consent and reward cre-
atives who contribute that data. DECORAIT combines distributed
ledger technology (DLT) with visual fingerprinting, leveraging the
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emerging C2PA (Coalition for Content Provenance and Authen-
ticity) standard to create a secure, open registry through which
creatives may express consent and data ownership for GenAI.

CCS CONCEPTS
• Applied computing→ Document management; • Informa-
tion systems→ Data provenance; • Computing methodolo-
gies → Visual content-based indexing and retrieval.
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1 INTRODUCTION
Generative AI (GenAI) models such as ChatGPT and Stable Diffu-
sion [OpenAI [n. d.]; Stablity.ai [n. d.]] are transforming creative
workflows through their ability to synthesize content given only
high-level direction. GenAI models are typically trained by sam-
pling millions of media items harvested from public data sources.
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Yet this practice has raised concerns over data governance, specif-
ically over creatives’ agency to opt in or out of the use of their
work for GenAI training. This has led to several legal challenges to
the creators of GenAI models, stemming from the concerns over
potential rights infringement – particularly of digital images. Fur-
thermore, creatives are not currently enabled to receive recognition
or reward for their contribution to GenAI images through the use
of their content in training.

We envision a future creative economy for content delivery
services, such as stock photography platforms, which enables the
commercialization of creative content and the contribution of it to
ethically and consensually built datasets for GenAI training. These
platforms are responsible for enabling their users, contributors,
and collaborators to express consent over their data being used
in GenAI training in a secure, persistent, and interoperable way.
Such capability is grounded in strong provenance signals for GenAI
training data, that enable creatives to register ownership and means
for payment for GenAI use as well as their consent for that use.

To this end, we propose DECORAIT, a decentralized registry
for GenAI training that enables creators to express consent, or
otherwise, for their images to be used in AI training, as well as
enabling them to receive reward when such use occurs. Our work
follows emerging community trends toward centralized, commer-
cial opt-out services. For example, spawning.ai maintains lists of
opted-out URL patterns (from individual links to entire domains).
GenAI models can match against these lists to exclude content from
training. However, a URL list may not capture all instances of a
creator’s content online. Moreover, scaling up multiple individu-
ally managed databases to track opt-out raises data consistency
and interoperability challenges. The protocol of the future creative
economy also ought to ensure the contributing creatives to GenAI
can be recognized and rewarded for their creative assets when their
particular content or style is identified to have contributed to spe-
cific synthetic media. DECORAIT addresses these issues through
three contributions:

(1) We propose a fingerprint-based content similarity score,
followed by a credit apportionment scheme to match
images and reward creatives for their training content most
correlated with generated synthetic media.

(2) A sharded decentralized search index using distributed
ledger technology (DLT), in which a content fingerprint dis-
tilled from the image provides a key to register and robustly
query opt-in/out information. We propose a hierarchical
approach to scale vector search of this index and a hybrid
on/off-chain approach to query processing.

(3) We leverage the emerging Coalition for Content Prove-
nance and Authenticity (C2PA) standard to express con-
sent and payment preferences via cryptographically signed
asset ‘manifests’. These manifests are stored within a dis-
tributed file system (IPFS) and referenced by hashed URL
link via the DECORAIT DLT search index.

Without loss of generality, we demonstrate DECORAIT within
the pipeline of Dreambooth [Ruiz et al. 2022] which enables special-
ization of diffusion models to generate novel renditions of a specific
subject provided via exemplar training images. Dreambooth pro-
vides a suitable use case as it enables GenAI model users to assure

the assets they intend to leverage for model personalization have
been opted-in for AI training. Additionally, the proposed system en-
ables the fair recognition and reward of those contributing creatives.
We could imagine a future for stock photography in which contrib-
utors receive payments not only through direct licensing (as now),
but automatically via DECORAIT’s ability to provide downstream
recognition and persistent crediting of the contributing creators
to GenAI. Fair monetary reward is encouraged via our apportion-
ing algorithm, coupled with the transparency and auditability of
crypto-currency payments processed using DLT.

2 RELATEDWORK
Distributed Ledger Technology (DLT), colloquially ’blockchain’,
ensures the immutability of data distributed across many parties
without requiring those parties to trust one another or any central
authority [Narayanan et al. 2016]. While the original and dominant
use is cryptocurrency tokens (e.g. Bitcoin [Nakamoto 2008]), emerg-
ing use cases include digital preservation [Lemieux 2016], supply
chain and media provenance [Holmes 2018; Walport 2015]. DLT
has been used to track ownership of media via the ERC-721 Non-
Fungible Token (NFT) standard [Bhujel and Rahulamathavan 2022],
although NFT lacks a rights or permissions framework [Fairfield
2021]. Recently, Ekila explored tokenized rights in NFT [Balan et al.
2023]. DLT was analyzed for media integrity in ARCHANGEL [Col-
lomosse et al. 2018]; digital records were hashed and used to tamper-
proof archival records. Perceptual hashing extended ARCHANGEL
from documents to images [Bui et al. [n. d.]] and videos [Bui et al.
2020]. Our work uses perceptual hashes for search; as a key to
resolving image fingerprints to data on training consent. Recent
advances in proof of stake and Layer 2 solutions scale DLT for
improved throughput and reduced climate impact, yet scalable stor-
age remains challenging. Peer-to-peer (p2p) distributed file-sharing
technologies such as the Interplanetary File System (IPFS [Benet
2014]) are used to address this.

C2PA is an emerging metadata standard for embedding content
provenance information (‘manifests’) in media files (‘assets’) [Coali-
tion for Content Provenance and Authenticity 2021]. Manifests are
signed via public-key pair and describe facts about asset prove-
nance, such as who made it, how and using which ingredient assets.
These facts are called ‘assertions’. C2PA initially focused on trusted
media [Rosenthol et al. 2020] and journalism [Aythora et al. 2020]
use cases. Recently, C2PA (v1.3) described a training-mining as-
sertion in which creators may set flags to opt in or out of GenAI
training, which we leverage in our work. Unfortunately, C2PAmeta-
data is stripped by non-compliant platforms (e.g. social media) or
attackers. Therefore, we use perceptual hashing to match content
to manifests.

Content Fingerprinting identifies content robustly in the pres-
ence of degradation or rendition (format, quality, or resolution
change) and minor manipulation. Perceptual hashing [Bharati et al.
2021; Black et al. 2021; Nguyen et al. 2021] and watermarking [Bui
et al. 2023; Devi et al. 2019] have been used to match content. Fin-
gerprinting has also been used to detect and attribute images to the
GenAI models that made them [Yu et al. 2021].
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Diffusionmodels lay at the foundation of most recent advances
in GenAI [Ho et al. 2020; Podell et al. 2023; Ramesh et al. 2022; Rom-
bach et al. 2021; Saharia et al. 2022]. Such models are commonly
trained on millions or even billions of images to gain the ability to
synthesize diverse and high-quality images consistently. Diffusion
models have shown substantially superior performance in compari-
son to GANs [Dhariwal and Nichol 2021]. However, they have also
been shown to memorize content and style from training data to
a higher degree than GANs [Somepalli et al. 2022], phenomenon
attributed to the presence of duplicated image data [Carlini et al.
2023; Somepalli et al. 2022] within the training data. [Somepalli
et al. 2023] showed that content and style memorization is an even
greater concern, specifically in text-conditioned diffusion models,
due to duplicated captions within the training data, with data repli-
cation not commonly occurring in unconditional diffusion models.
This further accentuates the need to involve creatives and obtain
consent to use their creative content in the GenAI training pipeline.
The present work lays the groundwork for such a system, query-
ing and registering the creatives’ opt-in or out decision on GenAI
training and offering a pipeline to reward creatives for using those
assets in GenAI.

Model personalization methods are techniques which enable
diffusion models to be customized to synthesize novel renditions
of a specific subject in different contexts. Recently, training-free
adaptation [Shi et al. 2023] and fine-tuning [Kumari et al. 2023; Ruiz
et al. 2022] have been explored to customise object instances. In this
work, we utilize the Dreambooth [Ruiz et al. 2022] technique for
model personalization, which fine-tunes a pre-trained text-to-image
diffusion model - the base model - using a small set of ‘concept’
images depicting a specific subject. The subject is thus embedded
in the output domain of the model which learns to bind it to a
unique identifier (token), which can then be used as part of the
prompt to synthesize the subject in new and diverse contexts. We
use Dreambooth to demonstrate the DECORAIT system, aiding in
the training pipeline by identifying opted-in assets from a stock
photography website available to train a personalized instance of a
diffusion model.

3 TRACING AND DESCRIBING IMAGE
PROVENANCE

We begin by describing how images are matched to trace visual
provenance. We use this approach to ‘fingerprint’ training images
to robustly match to entries in the DECORAIT registry, thereby
accessing data on consent status and creator wallet addresses which
are encoded via the C2PA open standard (subsec. 3.2). A second
pair-wise model enables both verification of such matches and
correlation between synthetic and training data for credit appor-
tionment.

3.1 Fingerprinting and match verification
To reliably match training images at scale, we employ two modules.
First, a contrastively trained model to extract compact embeddings
for measuring image similarity, and second a model which classifies
whether the closest matching images in that embedding are true
matches. The latter is motivated by the difficulty of thresholding

image similarity distances at scale whilst retaining practical accu-
racy levels. The classifier probability serves as a match verification
check and a score to drive credit apportionment.

3.1.1 Fingerprinting Model. We adapt the fingerprinting technique
described in [Black et al. 2021] to obtain compact embeddings of
the images within the registry’s corpus, allowing robust visual con-
tent attribution and search. The resulting fingerprint is a compact
embedding (256-D) of a CNN, contrastively trained to be discrimi-
native of image content whilst robust to image degradations and
manipulations to model content transformations common as im-
ages are shared online. The model is trained through a contrastive
learning objective [Chen et al. 2020]. Let 𝜙𝑖 = 𝐸 (𝑥𝑖 ) ∈ R256 be the
feature vector obtained as the output of a ResNet-50 encoder for an
image 𝑥𝑖 and 𝜙𝑖 represent an embedding of a differently augmented
version of 𝑥𝑖 . The training objective is given by

L𝐶 = −
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measures the similarity between

the feature vectors 𝑎 and 𝑏, and B is a large randomly sampled
training mini-batch [Balan et al. 2023].

In terms of data augmentation, in addition to the typical tech-
niques used in contrastive learning such as colour jittering and
random cropping, we consider minor manipulations, benign modi-
fications and degradations of image content due to noise, format
change and recompression, resolution change (resize), and several
other degradation manipulations studied in [Hendrycks and Diet-
terich 2019]. This is because images may be reshared online and
subject to many such transformations and renditions, and we wish
to match regardless.

3.1.2 Verification and Apportionment Model. Provided a shortlist
of the top-K candidate matches from the previous fingerprinting
step, we verify image matches through an additional pair-wise
comparison between the query image and each candidate match
retrieved. The spatial feature maps derived from the fingerprinter
model are used to compare the images as follows.

Let 𝐹𝑞 ∈ R𝐻×𝑊 ×𝐷 be the feature map for a query image 𝑥𝑞
and let {𝐹𝑖 }𝑘𝑖=1 be the 𝑘 corresponding retrieval feature maps. Each
feature map is processed with a 1 × 1 convolution to reduce the
dimensionality to 𝐷

4 and then numerous pooled descriptors from a
set of 2D feature map windowsW ⊂ [1, 𝐻 ] × [1,𝑊 ] are extracted,
similar to R-MAC [Tolias et al. 2015]. Let 𝑓 𝑞𝑤 ∈ R

𝐷
4 denote the

GeM-pooled [Tolias et al. 2015] and unit-normalized feature vector
for a window 𝑤 ∈ W and feature map 𝐹𝑞 . In contrast to [Tolias
et al. 2015], the window-pooled feature vectors are not averaged,
but collected as:

𝐹𝑞 = [𝑓 𝑞𝑤1 , . . . , 𝑓
𝑞
𝑤|W| ] ∈ R

|W|× 𝐷
4 , (2)

where𝑤𝑖 ∈ W and the number of windows is |W| = 55 in practice.
The feature correlation matrix is then computed as:

𝐶𝑞𝑖 = 𝐹𝑞𝐹
𝑇
𝑖 ∈ R |W|×|W| . (3)

These feature correlations are then flattened and fed to a 3-layer
MLP, which outputs a similarity score between query𝑞 and retrieval
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Figure 2:MatchVerificationModel. Two images are compared
at multiple scales to robustly find (partial) matches. The
model extracts multiple aggregated feature vectors from the
two feature maps corresponding to numerous image patches
of different sizes and positions. These features (collected in
𝐹𝑞 and 𝐹𝑖 ) are then used to compute the feature correlation
matrix 𝐶𝑞𝑖 , which is fed to an MLP to compute a final score.

𝑖 . To make the model symmetric w.r.t. its inputs, the match score
between images 𝑥𝑞 and 𝑥𝑖 is defined as

apportion(𝑥𝑞, 𝑥𝑖 ) = 𝜎
(
MLP(𝐶𝑞𝑖 ) +MLP(𝐶𝑖𝑞)

)
, (4)

where 𝜎 represents a sigmoid activation. The model is illustrated
in Fig. 2.

To train the model, positive example pairs are built via a strong
data augmentation protocol, similar to the data augmentation step
in the fingerprinter model training. This protocol includes colour
jittering, blurring, random resize cropping, and random rotations.
A hard negative mining approach is used to generate challenging
negatives.

For the sampling of negatives, the global average-pooled feature
maps of query and queued examples are compared via cosine simi-
larity. Given pairs of true and false matches, the model is trained
with a standard binary cross-entropy loss. During training, the
backbone feature extractor from the fingerprinter model is frozen.

3.2 Encoding consent and ownership
The Coalition for Content Provenance and Authenticity (C2PA)
standard aims to aid internet users’ trust decisions about digital
assets they might come across on platforms such as social media
or news websites. Recent work also employs C2PA as a tool to

encode provenance information within synthetically generated
media, including within its metadata details about the model used
to create it, as well as its training data [Balan et al. 2023].

A ‘manifest’ is a data packet that may be bound to digital assets
at creation time or post-factum. This manifest embeds facts about
the provenance of a digital asset within its metadata. These facts
are referred to as ‘assertions’. They may include information such
as who created the asset, how it was made, what hardware and
software solutions aided in its creation, and any edits it may have
undergone since its creation. This data is cryptographically signed
to prevent tampering. Signing C2PA manifests requires that the
signer uses their private key and public certificates, following the
Public Key Infrastructure (PKI). This assures that the consumer
makes trust decisions about the asset based on the identity of the
manifest signer. A certification authority (CA) conducts real-world
verification to ensure signing credentials are only issued to trusted,
non-malicious actors [Coalition for Content Provenance and Au-
thenticity 2021].

Additionally, C2PA manifests may bear information about other
"ingredient" assets used in the creation process. These ingredients
may point at assets, each bearing its own C2PA manifest describing
its provenance. As such, C2PA encodes a graph structure with the
root at the current asset and branching out to its ingredient assets.
The C2PA standard describes this ingredient model in terms of
creation of classical images (and other media assets) but we use it
in DECORAIT to describe how Dreambooth models may be created
from their training concept images, and how synthetic images are
created from their Dreambooth model as an ingredient.

Recently, C2PA (v1.3) introduced several training-mining as-
sertions in which creators may set flags to opt in or out of GenAI
training within manifests. These flags are data_mining, ai_inference,
ai_generative_training and ai_training. We leverage these flags to
encode consent in DECORAIT.

C2PA manifests also support the inclusion of DLT-based wal-
let addresses. For example, in Adobe Photoshop, any DLT wallet
address linked to a user’s Adobe identity may be recorded in the
C2PA metadata of an exported image. In the following sections, we
show how this wallet information, embedded immutably within
assets at creation-time, may be leveraged to reward creatives when
their images are used to train GenAI.

4 DECORAIT SYSTEM ARCHITECTURE
DECORAIT is a decentralized search index, performing key-value
lookups using a robust image fingerprint (subsec. 3.1.1) as the key.
The value is a URI, resolvable to a C2PA manifest indicating permis-
sion to train. A scalable solution demands: 1) persistent distributed
storage of manifests; 2) a distributed and immutable lookup op-
erated via an open model without recourse to a centralized trust.
Fig. 3 provides an overview of DECORAIT, which addresses these
decoupled requirements by: 1) storing manifests on IPFS, where
URIs are formed using a CID – a bit-wise (SHA-256 [Gilbert and
Handschuh 2003]) content hash; 2) using a hybrid on/off-chain
solution to create a sharded search index (subsec. 4.1). In Sec. 5, we
explore empirical trade-offs in defining the boundary between on
and off-chain computation for the search and the optimal level of
sharding.
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Figure 3: Overview of DECORAIT. 1) Ingest (blue): An image is fingerprinted by the client, and the hash is passed to the Hero
contract, which determines on-chain which of the sharded (cluster) contracts will handle the ingest. The cluster contract
emits an event recording the fingerprint (key) and IPFS URI (value) of the C2PA manifest, which the client stores on IPFS.
The relevant off-chain sharded index listens for on-chain updates from its respective contract. 2) Query (pink): An image is
fingerprinted by the client, and k-centroid data is used to determine which index shard to query with the fingerprint (key) to
obtain the C2PA manifest URI (value). The client decides on whether GenAI training is permitted using the manifest. The
diagram reflects the recommended variant (E-FOF) of DECORAIT (c.f . Table 1).

4.1 Decentralized Fingerprint Index
All images within DECORAIT undergo visual fingerprinting using
the approach outlined in Sec. 3.1.1 to enable large-scale retrieval
of visually similar assets upon querying the registry. We adopt a
hierarchical approach to share the search index, applying k-means
clustering to fingerprints computed from a representative (1M) im-
age sample. The resulting k-centroids subdivide the fingerprint
hash space into 𝑘 shards. Recursive sharding is possible, but exper-
iments focus on a single level. We shard the index using 𝑘 + 1 DLT
smart contracts deployed on a local Ethereum test-net; one contract
per each of the 𝑘 clusters, plus a single entry point – the ‘hero’
contract – to orchestrate the sharding. The hero contract performs
the k-NN assignment of fingerprints to the k-centroids, delegating
operations (e.g. ingest, query) to be handled by the smart contract
of the closest cluster (and so, shard).

The contracts are implemented in Solidity, which does not sup-
port floating point math. We convert the 256-D floating point finger-
printing embeddings into integers as fixed-point (1015 precision),

a workaround for applying ML operations on DLT [Harris and
Waggoner 2019].

4.2 Hybrid on/off-chain variants
We explore several design choices for implementing our system,
evaluating three main variants (Table 1). In particular, we explore
options for persisting the key-value store (here used to map im-
age fingerprints to manifest URIs) and on/off-chain options for
implementing the shard assignment and retrieval processes.

4.2.1 Image Fingerprints and Data Storage. DLT storage patterns
commonly persist data in two main ways: 1) in-contract i.e. within
the state of a smart contract (as with NFTs), or 2) on the event log,
a ledger of signals/exceptions emitted from smart contract code
(as with cryptocurrency transactions). In our experiments, we use
mnemonics prefixed E- to indicate variants using the event log and
C- to indicate variants using in-contract storage.

Shards are described by k-centroid data from clustering in fixed
point (256 integers) form. Fingerprints are similarly represented.
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These 256-D data are stored as strings in the event log but may
be stored in integer arrays for in-contract storage. There is cost
efficiency in storing strings over integer arrays. However, there is a
time cost in converting the strings for fixed point operation during
ingest and query. The transaction cost implications are quantified
in subsec. 5.4.

Table 1: Configuration of the three implementation variants.

Action C-OOO E-OOF E-FOF
Key-value storage in contract event log event log

Shard centroid prediction on query on-chain on-chain off-chain
Shard prediction on ingest on-chain on-chain on-chain
Retrieval with-in shard on-chain off-chain off-chain

4.2.2 Shard assignment and retrieval. To store (ingest) or retrieve
(query) a key-value pair, it is necessary to match the fingerprint to
its shard via a k-NN assignment operation against the k-centroids
obtained during initial clustering. In the case of queries, the retrieval
is performed by matching against each key (fingerprint) stored
within the key-value store of that shard. In Table 1, we use ’O’ to
indicate on-chain and ’F’ to indicate off-chain computation for each
matching operation and compare the efficiency of these variants in
Sec. 5.

4.2.3 Smart contract interaction. The hero contract receives all
operations and transactions in all variants. When ingesting a fin-
gerprint to the registry, the hero contract reads it and calls the
respective shard contract, which stores the key-value pair within
its own contract (C-) or the event log (E-). In all cases, the smart
contract performs the sharding via on-chain operations, which safe-
guards the integrity of the shards against inaccurate or malicious
additions that could otherwise "infect" the clusters.

When querying a fingerprint, the on-chain variant (C-OOO) pro-
ceeds similarly - determining the shard and delegating the retrieval
process to the relevant smart contract. The retrieval is performed
on-chain in this case. In variants E-OOF and E-FOF, the query pro-
cessing is partly delegated to off-chain processes. A web service is
provided for each shard, which listens to the event log emitted by
the smart contract of its respective shard. When submitting a query,
the hero smart contract determines the appropriate shard index to
call. This may be done on-chain (per the ingestion flow) or off-chain
using k-centroid data from the hero contract. The relevant shard’s
web service performs the retrieval in both cases. Using off-chain
processing mitigates computational costs as the index scales, as we
now show. Fig 3 shows the interaction of the web service and smart
contracts.

4.3 DECORAIT in the GenAI Workflow
We now describe how DECORAIT integrates with the GenAI train-
ing process to determine consent and how subsequently generated
synthetic images may be traced to pay a reward to the creators who
contributed that training data.

4.3.1 Training Consent. To ensure the creatives who authored the
images have consented to their assets being used for training, each
image is queried against the DECORAIT registry. As described in

subsec. 4.1 the fingerprint embedding is used to identify the closest
visual matches within the decentralized search index. These are
verified using the apportionment model (subsec. 3.1.2) to obtain the
closest match and so, a decision on training consent for each of the
images. As described in subsec. 3.2, this information is embedded
within the C2PA manifest accompanying each image on the DEC-
ORAIT system. We envision a future in which stock photography
sites might parse and show this consent information by default,
enabling users to select only the opted-in images when sourcing
data for GenAI training.

4.3.2 Encoding Synthetic Image Provenance. We further leverage
the C2PA standard to encode the provenance of the newly gener-
ated synthetic image, cryptographically tying it to the "ingredient"
set of concept images and GenAI model. Thus, using the C2PA
manifest of the generated image it is possible to trace both the
model that generated it (the personalized model, and in turn, its
base model), as well as the data used to personalize it. Specifically,
the C2PA "ingredient" assertion is used to indicate the image dataset
as ingredients to the fine-tuned model, as well as the base model.
The personalized, fine-tuned model is then listed as an ingredient
within the manifests of any synthetic images it generates. Thus,
the synthetic image is tied to its ingredient assets listed above. This
offers a complete creation provenance chain, immutably signed
at creation time. Although in the case of finetuning models, the
images from the dataset are individually included in the manifest,
C2PA allows for manifests to be defined over archives of image
collections for larger datasets. Figure 4 visualizes this relationship.

4.3.3 Apportionment and Payment. Given a synthetic image, DEC-
ORAIT enables credit to be assigned across training data images
in order to recognize and reward contribution. The set of training
image ingredients is first identified by traversing the image’s prove-
nance graph, rooted in the manifest of the synthetic image. Similar
to the training stage, DECORAIT again uses visual fingerprinting to
perform matching within the decentralized search index to lookup
the C2PA manifest of each training image — including the DLT
wallet address of each image’s creator.

Credit is then assigned to each image proportional to a pair-wise
score predicted by the apportionment model of subsec. 3.1.2: given a
synthetically generated image 𝑋𝑞 ∈ R𝐻×𝑊 ×3, the visual similarity
of each training image 𝑋𝑖 in the identified concept set is scored via
eq. 4 yielding a weighting𝑤𝑖 :

𝑤𝑖 = max
(
apportion(𝑋𝑞, 𝑋𝑖 ) − _, 0

)
, (5)

where _ = 0.7 is an empirically set threshold for the visual similarity.
We then assign credit per image by normalizing these weights over
all top-image matches in the concept set.

Once the credit apportionment has been determined, payments
may be processed securely and transparently over DLT. The authors’
wallet addresses are extracted from the C2PA manifest associated
with each image (Figure 4, left).

In Sec.5.5 we demonstrate how the DECORAIT system can be
applied to a Dreambooth training pipeline, querying the registry for
training consent, computing the similarity score, and apportioning
credit amongst the set of concept images for any given generation.
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Figure 4: Provenance graph of synthetic media, as may be encoded via C2PA manifests. Left: starting from the generated image,
the specialized Dreambooth model is listed as ingredient in its C2PA manifest. In turn, the Dreambooth model links to the
specialization set of images and the base text-to-image Stable Diffusion model, which then may list as ingredient an archive
of its entire training image corpus. Right: example JSON C2PA manifest accompanying a synthetic image, with highlighted
ingredient and DLT wallet address assertions (the latter using the schema of a commercial image editor).

5 EVALUATION
We evaluate the relative performance and scalability of the three
variants of the DECORAIT decentralized search index: C-OOO,
E-OOF, E-FOF (c.f . Table 1) concluding on the most performant
variant. We then demonstrate the proposed variant of the DECO-
RAIT system as applied to the use case of a Dreambooth training
pipeline and demonstrate querying the registry, resolving to a de-
cision on training consent of the images within the set of concept
images, followed by processing payments using DLT based on our
apportionment algorithm.

5.1 Experimental Setup
We evaluate using the LAION400M dataset [Schuhmann et al. 2021],
comprising image-text pairs crawled from publicly available web
pages. LAION400M is extensively used to train GenAI models. For
our experiments, we sample a training corpus of 1M images and sign
these with C2PA manifests setting the ai_generative_training,
data_mining, and ai_training flags to ‘not allowed’ to signify
that the author has opted out of those images being used to train
GenAI models.

The evaluation uses up to 1000 query images randomly sampled
from the corpus, to which random augmentations are applied. The
data augmentation process follows [Black et al. 2021]. It aims to

mimic the perturbations an image may suffer from repeated use,
upload, download, and compression on the internet (e.g. noise, and
changes in resolution, quality, and format). In addition, we form
a second query set of 100 unperturbed images. Lastly, we demon-
strate the proposed DECORAIT system variant (E-FOF) within a
Dreambooth model specialization pipeline.

5.2 Evaluating Accuracy vs Sharding
We evaluate the lookup’s accuracy as a function of sharding (cluster
count 𝑘) while maintaining a constant corpus size. The accuracy is
agnostic to the on/off chain implementation of storage and query
lookup, but the performance (query speed) varies significantly. Re-
sults are reported in table 2 for 1000 queries.

There is a trend to slightly reduced accuracy as sharding (𝑘) in-
creases due to the risk of heavy perturbations mis-assigning image
fingerprints to adjacent shards. When no perturbation is present,
the system performs with 100% accuracy for all shard counts. Yet,
increasing sharding will reduce retrieval time (see below). On this
basis, we select 𝑘 = 25 as an appropriate sharding trade-off for the
remainder of our experiments.
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Table 2: Evaluating accuracy vs. shard count (𝑘) for a 0.5M cor-
pus size. The performance of on-chain shard prediction and
within shard retrieval is studied for E-OOF. Shard prediction
time increases, but retrieval time decreases as 𝑘 increases.

Clusters
(k)

Accuracy
(%)

Cluster Prediction
Time (on-chain)(s)

Retrieval Time
(off-chain) (ms)

1(Baseline) 92.3 - 46.157
15 89.1 6.5 3.612
25 89.1 10.3 2.461
50 88.1 20.6 1.306
100 87.3 35.2 0.721
200 86.5 59.9 0.413
500 86 113 0.284
750 87.4 181.8 0.271
1000 86.4 272.9 0.249

5.3 Evaluating Performance vs Sharding
Retrieval speed varies significantly for each of our three variants
and comprises two processes: closest centroid (shard) prediction
and retrieval within the shard. We evaluate the speed of the nearest
centroid prediction as a function of shard count (𝑘). The num-
ber of distance computations (between the query embedding and
each cluster centroid) scales linearly with 𝑘 (Table 2), and this
becomes prohibitive (several seconds) for high-frequency transac-
tions (queries) at 𝑘 = 25, though acceptable for bulk ingestion. This
suggests that variant patterns x-Oxx are not scalable at query time.

Table 3: Evaluating in-contract storage (C-OOO) for accuracy
and speed as corpus size increases. Shard count 𝑘 = 25. Accu-
racy is good, but speed is poor relative to event-log variants.

Corpus Accuracy
perturbed (%)

Accuracy un-
perturbed (%)

Cluster prediction & KNN
search time (on-chain) (s)

500 91.2 100 10.58
1000 92.4 100 19.72
5000 90.6 100 142.13
12500 90.8 100 295.38

Further, we evaluate the speed and accuracy of shard prediction
and image retrieval as a function of our system’s image corpus size
for variants C-xxx and E-xxx. C-OOO stores the data and executes
the lookup on-chain. In contrast, E-OOF/FOF emit the image data
as events on the blockchain and performs image lookup, retrieval,
and verification off-chain. Table 3 for C-OOO shows that the on-
chain retrieval speed drops significantly as corpus size increases,
suggesting C-OOO is unfit for GenAI contexts with large amounts
of data. Table 4 shows that E-FOF maintains high retrieval accuracy
as corpus size increases, with an average retrieval speed of just
over 4 ms for a corpus size of 1M images. Tables 3 and 4 were
measured for 500 queries. Further, we find that ingesting images for
the system’s initial setup takes an average of 683.2 ms per image in
C-OOO, whereas E-FOF significantly improves speed requiring an
average of only 81.5 ms per image.

We conclude that E-FOF exhibits scalability with corpus size and
shard count, leading us to recommend variant E-FOF for the GenAI
training opt-in/out task.

Table 4: Evaluating the recommended event-log storage vari-
ant (E-FOF) for accuracy and speed as corpus size increases,
showing good scalability. Shard count 𝑘 = 25.

Corpus
(x103)

Accuracy
perturbed (%)

Accuracy un-
perturbed (%)

Cluster prediction & KNN
search time (off-chain) (ms)

100 91.6 100 0.58466
250 91 100 1.50747
500 91.2 100 2.53011
1000 91.2 100 4.27562

5.4 Evaluating Cost
Transaction cost is a consideration in scaling DLT systems. C-OOO
is significantly more costly than E-OOF/FOF. Ingesting images
costs, on average, 0.9M gas/image for C-OOO and, in comparison,
only 0.2M gas/image for E-xOx variants. Similarly, when adding an
image, a user would pay, on average, 19M gas/image for C-OOO but
only 15M gas/image for E-xOx variants. Projecting the fingerprint
embedding space onto a lower dimensional space using principal
component analysis can further reduce these costs but does not alter
the trend. The cost factor reinforces our design recommendation
to use the DLT event log rather than in-contract storage for the
key-value data.

5.5 DECORAIT applied to Dreambooth
Using the recommended E-FOF variant of the system, we demon-
strate DECORAIT in a real-world scenario by specializing a Stable
Diffusion model using the Dreambooth [Ruiz et al. 2022] method
to synthesize renditions of a specific subject in new contexts.

Initially, a set of concept images is purchased from a popular
stock photography website, which can be viewed on the left side
of Fig.5. Unfortunately, their delivery is not accompanied by a
C2PA manifest, therefore training consent cannot be immediately
determined. The DECORAIT system is then queried to determine
training consent across the set of concept images, by matching the
images to their corresponding images within the registry. The assets
within the registry are accompanied by C2PA manifests, which
detail the author’s choice of whether to allow GenAI training using
that asset. The query to the DECORAIT registry resolves to several
of our chosen images indicating that the creative has opted out of
GenAI training. Fig.1 pictures the effect differing training data can
have on the resulting model and the synthetic media it is able to
generate, especially when a subset of the chosen concept images
has been opted-out of GenAI training.

Once the model is trained using the opted-in images and fol-
lowing the Dreambooth method, we encode this provenance infor-
mation within the manifest of both the resulting model and the
generated synthetic image. An example provenance graph is pic-
tured in Fig.4 and we follow the same structure in this example. The
"ingredient" feature of the C2PA standard is leveraged in order to
reference the resulting personalized model as the ingredient asset
of the generated synthetic image. Within the personalized model’s
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Figure 5: DECORAIT and Dreambooth pipeline including registry querying and model personalization flow. The Dreambooth
model is specialized using the 3 opted-in images of a car and the proposed apportionment algorithm is applied across the
image corpus. The red cross indicated images which have been opted-out according to the DECORAIT registry. The resulting
apportionment conducted on the generated synthetic image from the experiment as described in Sec.5.5 is shown. The DLT
wallet addresses of the three authors of the images are identified using the accompanying C2PA manifests. Payment is then
conducted automatically, securely, and transparently using DLT, and one transaction’s confirmation is pictured.

manifest, we encode as ingredients both the set of concept images
it was trained on, as well as the base text-to-image Stable Diffusion
model which was fine-tuned in order to create the personalized
model. The base model may include within its manifest an archive
detailing its entire training corpus of ingredient images.

Further, we apply the apportionment algorithm in order to re-
ward the contributing creatives. The process starts from the C2PA
manifest of the synthetic image, tracing the provenance graph in
order to identify the personalized model which created it and ulti-
mately its training images. Then, the apportionment accumulates
prediction scores using the fingerprinter and second stage classi-
fier model for each concept image the model was specialized on.
The wallet addresses belonging to the creatives who authored the
training images are identified by analyzing the C2PA manifests of
those images. Lastly, payments are processed for each contribut-
ing creative, with currency sent directly to their wallet address
through DLT, as pictured on the right side of Fig.5. The transaction
confirmation is also pictured.

Thus, we have demonstrated an end-to-end pipeline which in-
cluded ethically building a dataset of assets which have been opted-
in for GenAI training, successfully avoiding copyright infringement,
personalizing a generative diffusion model, as well as analyzing the
resulting synthetic media and running our proposed apportioning
algorithm in order to recognize and reward the contributing cre-
atives, enabling near-instant processing of royalty-like payments
using DLT.

6 CONCLUSION
We presented an end-to-end system through which content cre-
ators may assert their right to opt in or out of GenAI training, as
well as receive reward for their contributions. We investigated the
feasibility of a decentralized opt-in/out registry for GenAI using
DLT, reaching recommendations that 1) event-log storage is appro-
priate; 2) on-chain shard prediction is appropriate for ingest but
not for the query. We propose variant E-FOF as the most scalable
solution, achieving 100% accuracy on non-augmented queries and
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91.2% accuracy in the presence of augmentations, with query speed
up to 4 ms for a corpus of 1M images.

DECORAIT employs the distributed ledger (DLT) as a trust-
less registry and source of truth. The bulk of the computation-
ally expensive operations are conducted off-chain. We proposed
a fingerprinting-based content similarity score for image attribu-
tion and credit apportionment over the attribution corpus in the
case of synthetic media, with payments securely processed for the
contributing creatives using DLT. The system leverages the C2PA
standard to track content provenance, specify GenAI training con-
sent and store the creator’s DLT wallet addresses. We demonstrated
the DECORAIT system as part of a Dreambooth GenAI model
personalization pipeline, demonstrating our proposed method for
recovering synthetic media provenance and apportioning credit.
DECORAIT thus enables contributing creatives to receive recogni-
tion and reward when their content is used in GenAI training.

Future work could incorporate the DECORAIT registry within
popular GenAI data loaders and ship the apportioning flow as a li-
brary in order to drive adoption. Most notably, future efforts should
focus on investigating the socio-technical drivers and challenges
our system may face when deployed in the wild. Further consider-
ation is required for its development and implementation within
a sustainable business model. Equally critical is the necessity for
establishing comprehensive policies within the legal and regula-
tory space addressing digital rights and data sourcing for training
GenAI models. These questions are likely to remain open for some
time, however, ensuring the consensual use of digital assets and fair
reward to contributors within the GenAI training pipeline is both
a timely and urgent matter. We believe the proposed DECORAIT
system is a promising first step towards a decentralized, end-to-end
solution to the problem.
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