

Interpretable Long-term Action Quality Assessment

Xu Dong¹, Xinran Liu¹, Wanqing Li², Anthony Adeyemi-Ejeye¹, Andrew Gilbert¹

¹University of Surrey, Guildford, UK

²Advanced Multimedia Research Lab, University of Wollongong, Wollongong, Australia

BMVC 2024

"How well these actions are performed?"

Score: 92.3

CCC

Score: 79.6

Score: 97.7

Introduction

- Real-world applications of AQA: Sports analysis, Healthcare, and Daily activity assessment.
- Eg: AQA serve as a reference for human judges in sports competitions.
- Challenges in previous work:
 - Fine-Grained Feature Extraction
 - Robustness
 - Uncertainty
 - Interpretability
 - Long-term video

Challenge One

- **Challenge:** How can we make AQA results more **interpretable**?
- Existing AQA models regress single score and lack interpretability and semantic meanings of clips.
- Quality (Score) of action execution and degree of Difficulty (Weight) are two important factors.
- How to disentangle semantic meaning of a single clip without label.

Challenge Two

- Challenge: Limited Understanding of Long Temporal Sequences.
- AQA datasets

Dataset	Action	Average Video Length
MTL-AQA	Diving	4.1s
FineDiving	Diving	4.2s
AQA-7-Dive	Diving	4.1s
Fis-V	Figure Skating	2m 50s
Rhythmic Gymnastics	Gymnastics	1m 35s
LOGO	Synchronized Swimming	3m 24s

Network Structure

Temporal Skipping

- Temporal sequences lead the model to **select shortcuts** and skip decoder self-attention, preventing output degradation.
- Self-attention maps show near-uniform distribution.
- Each clip has averaged score in segment score.
- This can be mitigated by our proposed Attention loss and Query Initialization module.

Methodology

- <u>Attention loss</u> uses KL Divergence to constrain Self-attention and Cross-Attention outputs.
- <u>Query Initialization module</u> uses larger variance to initialize query embedding in transformer decoder.

Query Initialization Module

Experiment

Performance comparison on Rhythmic Gymnastics (RG) and Figure Skating Video (Fis-V) dataset

Methods Feature Extractor		RG (SRCC↑)				Fis-V (SRCC↑)			
		Ball	Clubs	Ноор	Ribbon	Avg.	TES	PCS	Avg.
SVR [19]	C3D [25]	0.357	0.551	0.495	0.516	0.483	0.400	0.590	0.501
MS-LSTM	I3D [<mark>3</mark>]	0.515	0.621	0.540	0.522	0.551	-	-	-
[32]	VST [17]	0.621	0.661	0.670	0.695	0.663	0.660	0.809	0.744
ACTION-NET	I3D[3]+ResNet[11]	0.528	0.652	0.708	0.578	0.623	-	-	-
[35]	VST[17]+ResNet[11]	0.684	0.737	0.733	0.754	0.728	0.694	0.809	0.757
GDLT [31]	VST [17]	0.746	0.802	0.765	0.741	0.765	0.685	0.820	0.761
Ours	VST [17]	0.823	0.852	0.837	0.857	0.842	0.717	0.858	0.788

Performance comparison on LOGO dataset

Methods	I	3D [<mark>3</mark>]	VST [17]		
wiethous	SRCC ↑	R- ℓ 2(×100) ↓	SRCC ↑	$R-\ell$ 2(×100) ↓	
USDL [24]	0.426	5.736	0.473	5.076	
CoRe [34]	0.471	5.402	0.500	5.960	
TSA [33]	0.452	5.533	0.475	4.778	
ACTION-NET [35]	0.306	5.858	0.410	5.569	
USDL-GOAT [38]	0.462	4.874	0.535	5.022	
TSA-GOAT [38]	0.486	5.394	0.484	5.409	
CoRe-GOAT [38]	0.494	5.072	0.560	4.763	
Ours	0.593	1.220	0.780	1.745	

Ablation Study

Module	Attention Loss	Query PE	Query Init.	SRCC ↑
Baseline	×	×	×	0.628
	\checkmark	×	×	0.807
	\checkmark	\checkmark	×	0.810
Ours	\checkmark	\checkmark	\checkmark	0.842

Ablation study on the average performance across various modules.

Effect of Positional Encoding on RG dataset

Methods	Query	Memory	SRCC
Baseline	×	×	0.758
	×	\checkmark	0.778
	\checkmark	\checkmark	0.751
Ours	\checkmark	×	0.824

Effect of Query Variance Initialization on RG dataset

Variance Init.	SRCC
0.5	0.810
1	0.810
3	0.811
5	0.820

Query Initialization

Self-attention map of query initialized with different variances

Visualization of Interpretability

Conclusion

- Explored interpretability in long-term AQA task.
- Proposed Attention Loss and Query initialization module to mitigate Temporal skipping problem.
- Proposed weight-score regression head for improve interpretability.
- Future work
 - Exploring evaluation methods the interpretability of AQA networks.
 - Other factor for evaluating action quality such as **artistic** quality.

Thank you!

Interpretable Long-term Action Quality Assessment

Xu Dong¹, Xinran Liu¹, Wanqing Li², Anthony Adeyemi-Ejeye¹, Andrew Gilbert¹

¹University of Surrey, Guildford, UK ²Advanced Multimedia Research Lab, University of Wollongong, Wollongong, Australia

Find us at poster #517!

Read our paper

Find me on LinkedIn and WeChat!