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Abstract. We investigate a human-like interpretable model of video un-
derstanding. Humans recognise complex activities in video by recognis-
ing critical spatio-temporal relations among explicitly recognised objects
and parts, for example, an object entering the aperture of a container. To
mimic this we build on a model which uses positions of objects and hands,
and their motions, to recognise the activity taking place. To improve this
model we focussed on three of the most confused classes (for this model)
and identified that the lack of 3D information was the major problem. To
address this we extended our basic model by adding 3D awareness in two
ways: (1) A state-of-the-art object detection model was fine-tuned to de-
termine the difference between “Container” and “NotContainer” in order
to integrate object shape information into the existing object features.
(2) A state-of-the-art depth estimation model was used to extract depth
values for individual objects and calculate depth relations to expand the
existing relations used our interpretable model. These 3D extensions to
our basic model were evaluated on a subset of three superficially sim-
ilar “Putting” actions from the Something-Something-v2 dataset. The
results showed that the container detector did not improve performance,
but the addition of depth relations made a significant improvement to
performance.
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1 Introduction

There are a number of motivations for investigating a human-like interpretable
approach to video activity recognition. Firstly we may aim to improve the per-
formance of automated activity recognition, since humans are still able to beat
computers at this task, and a human-like approach may bring us closer to hu-
man performance. Secondly, interpretable models may be desirable in AI systems
where human society has an expectation that a decision can be explained, and
justified. For example if a member of a minority ethnic group is flagged for sus-
picious activity in a surveillance video, and questioned by police as a result,
there is an expectation that the decision process of the AI system can be in-
spected to ensure that it is not applying racial bias. Interpretability also has
advantages when systems need to be debugged, because error analysis can give
human-understandable reasons for the failure, and these can be acted upon to
fix the problem. Thirdly, if we want to understand more about the human vi-
sual system, and how it interprets video, it would be insightful to be able to
build models of its behaviour, and through iterative experimental comparisons,
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to bring those models closer and closer to matching the behaviour of the human
visual system.

Research has shown [1] that humans discriminate similar activities by dif-
ferences in relationships among critical parts of objects, such as the position
of the hand relative to another person’s back, differentiating between fighting
and hugging. While such relationships could, in principle, be learnt by a deep
learning approach, in practice, deep learning tends not to make use of features
that are easily interpretable by humans, as the training process would need to
be conditioned to take human characteristics into account.

2 The Original “Top Down Model” (TDM)

The high-level overview of the system we build on is as follows (note that this
description is brief as more detail is in the source [2]): We use as an input only the
bounding boxes of the principal objects and hands from the video frames (there
are no lower level visual or optical flow features from the videos). We interpret
the video as a possible member of each of the possible action categories using
an action specific model for each class. I.e. every single model is attempted on
the video, to see which produces a best fit. This is seen as a top-down approach
because each model has a prior conception of what a certain activity should be,
and tries to impose this on the data to see if there is a fit. The first step in
applying a model is to temporally segment the video into five ‘phases’ for each
action category, representing the sequential stages involved in that action. The
phases are labelled a, b, c, d or e and a typical segmentation is illustrated in Fig. 1
(top).

– Phase a: The object(s) is present in the scene, the manipulation has not
happened;

– Phase b: The hand enters (possibly carrying an object);
– Phase c: The critical manipulation happens (e.g. object placed or picked);
– Phase d: The hand departs (possibly carrying an object);
– Phase e: The objects are present, with the result of the manipulation evident.

Most videos depict all five phases, but some do not; e.g. some videos start at
phase c, with the hand already contacting the moved object, while other videos
finish at c without sufficient frames to make a clear d.

Each action specific model has a method of assigning phases, which is learned
from a small (approx. 25) number of labelled examples. Once phases are assigned,
we then compute feature vectors characterising each phase. Feature vectors in-
clude data about relations among bounding boxes of the two principal objects
and the hands, for example, object size, object movement since previous frame,
relative movement between two objects, object moving with the hand, or mov-
ing relative to the hand, etc. Using the computed feature vectors we train a
random forest classifier for each category (with the positive examples being that
category and other categories being negative examples). When doing multi-class
classification, the highest probability random forest prediction is returned as the
class.
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Fig. 1: Activity frames illustrating the 5 phases for the action ’Putting something into
something’. (red and blue bounding boxes indicate objects and light blue the hand)

3 Adding 3D Awareness

Firstly a container detection model was implemented to augment the features
for the objects. Detectron2 was used as the base, and was the fine-tuned using
the OpenImagesv6 dataset, which was reclassified as container or not container.
The best performance that could be achieved reached an accuracy of 69.0% on a
validation set. Based on the error analysis performed, the model appears to be
classifying the underlying classes that were merged into "Container" and "Not-
Container" and failing to generalize on common features that all the samples
shared. This is an indication that within the scope of experimentation performed
Detectron2 simply does not have the capacity to learn 3D features such as "con-
cavity" based off of 2D properties alone. This illustrates the general phenomenon
that it is extremely challenging to achieve a human level of performance on tasks
that such as classifying affordances of everyday household objects (which have
a huge variety of surface forms).

The second 3D element was depth understanding. Monocular depth estima-
tion was performed using SharpNet [4]. The accuracy of the depth estimation
varies widely for different videos. The biggest challenge is the quality of videos
and their "in the wild" nature. Failures are evident when there is significant
motion within the frame as well as challenging angles of view which may differ
from the perspectives the model was trained on. The estimated depth was added
as the four following features: Depth of object 1, Depth of object 2, Depth of
hand, Depth difference between onject 1 and object 2.

4 Results

To assess the performance of our approach, we used Something-Something V2 [3]
(SSV2) to evaluate the action recognition task. All models are evaluated on the
following subset of actions from SSV2:

– 106 : "Putting something into something"
– 112 : "Putting something onto something"
– 118 : "Putting something underneath something"

When evaluating all models the original TDM (Top-Down Model [2]) is used
as a baseline. The results of all models trained can be seen in Table 1.
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Metric Precision Recall
SSV2 class 106 112 118 avg 106 112 118 avg

TDM (Ours) baseline [2] 0.69 0.47 0.29 0.48 0.63 0.59 0.24 0.49
3D CNN [3] 0.61 0.36 0.00 0.32 0.84 0.22 0.00 0.36
VideoMAE [5] 0.89 0.71 0.71 0.77 0.86 0.80 0.60 0.76
Ours + initial improvements 0.72 0.45 0.32 0.49 0.62 0.68 0.14 0.48
Ours + container detection 0.68 0.41 0.32 0.47 0.57 0.54 0.34 0.48
Ours + depth relations 0.72 0.45 0.37 0.51 0.66 0.59 0.26 0.50
Ours + container detection + 0.66 0.46 0.30 0.47 0.71 0.42 0.24 0.46
depth relations

Table 1: Precision and recall rates for each model tested on the validation subset.
Macro average is used instead of weighted average. The highest result is highlighted in
black whilst the second highest is highlighted in blue.

5 Discussion and Conclusion

In this work, we added 3D information both to object features (for container/
notContainer) and also to object positions. Only the latter improved perfor-
mance for the system. Even then the performance we can achieve with our
human-like approach falls far short of that achievable by mainstream deep learn-
ing approaches. Some reasons for this are clear: Our approach has very little
information about the objects in the scene, for example the hand is simply de-
scribed by a 2D bounding box. In contrast, a human observing a hand moving
and acting in a video scene can form a pretty good estimation of its 6D pose in
space (including all joint positions), and can use this to make good guesses about
the grasp it is performing, and the manipulation done with an object. Similarly
for the objects and context (surrounding objects): humans can describe a lot of
detail. Our model is extremely impoverished compared to the level of detail a hu-
man brain extracts. We are not aware of any work which can model the features
a human extracts at a reasonable level of detail, and there are very few people in
the world that seem to be even attempting this human-like approach. The most
detailed approach to modelling human-like features that we are aware of is Ben
Yosef et al.’s [1] work on still images; it shows that a lot of work needs to be
done to capture human-like features even for a very small number of objects.

In general, based on Ullman’s models, human vision seems to use fewer layers
of processing than deep learning, but the relations and features extracted by a
level tend to be much more complicated (requiring more advanced algorithms)
than the function that a single layer of deep learning can implement. Humans use
a small number of advanced and critical features and relationships to discrimi-
nate categories. Deep learning uses a very large number of ‘weak’ relations and
features. For this reason deep learning degrades gradually as the input is reduced
e.g. by blurring or cropping. Human vision is quite robust to degraded input,
until a threshold is reached (where a critical feature is no longer recognisable),
and then it drops dramatically.
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