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Figure 1: Data memorization presents a privacy challenge for the federated training of diffusion models, where private data
can be regurgitated as training progresses. PDFed proposes a novel measure and mitigation of this behavior through an
aggregator-free distributed training protocol using distributed ledger technology (DLT), or ‘blockchain’ that we later show
reduces data memorization.

Abstract
We present PDFed, a decentralized, aggregator-free, and asynchro-
nous federated learning protocol for training image diffusion mod-
els using a public blockchain. In general, diffusion models are prone
to memorization of training data, raising privacy and ethical con-
cerns (e.g., regurgitation of private training data in generated im-
ages). Federated learning (FL) offers a partial solution via collabo-
rative model training across distributed nodes that safeguard local
data privacy. PDFed proposes a novel sample-based score that mea-
sures the novelty and quality of generated samples, incorporating
these into a blockchain-based federated learning protocol that we
show reduces private data memorization in the collaboratively
trained model. In addition, PDFed enables asynchronous collab-
oration among participants with varying hardware capabilities,
facilitating broader participation. The protocol records the prove-
nance of AI models, improving transparency and auditability, while
also considering automated incentive and reward mechanisms for
participants. PDFed aims to empower artists and creators by pro-
tecting the privacy of creative works and enabling decentralized,
peer-to-peer collaboration. The protocol positively impacts the cre-
ative economy by opening up novel revenue streams and fostering
innovative ways for artists to benefit from their contributions to
the AI space.
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1 Introduction
Diffusion models are a powerful class of generative AI (GenAI) algo-
rithms transforming creative practice by democratizing the ability
to create realistic and readily customizable visual content. Diffusion
models require training on vast datasets to achieve state-of-the-
art performance. However, collecting and using such data poses
significant challenges, including privacy, copyright, and creator
consent. In particular, diffusion models are prone to training data
memorization and often regurgitate training data within generated
content. This poses data privacy risks, particularly for copyrighted
creative works or identifiable personal images. As a result, there
is a growing demand for privacy-preserving methods that enable
ethical diffusion model training while respecting data privacy.

Federated learning (FL) is a machine learning approach that en-
ables model training across decentralized edge devices or servers,
each holding local data samples without exchanging or exposing
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them. FL emerged as a solution to the pressing demand for in-
dividuals and organizations to maintain control over their data
while still participating in the collective training of AI models. Inte-
grating diffusion models with FL allows for collaborative training
across distributed datasets while safeguarding data privacy and
security, unlocking new opportunities for models to access and
learn from diverse datasets that would otherwise be inaccessible.
Existing FL [Behera et al. 2022; Mugunthan et al. 2020; Yun et al.
2023] approaches typically require a trusted, centralized node to
orchestrate the training process, including aggregating model sub-
missions and disseminating updates to participating nodes. This
centralized node can become a single point of failure and a privacy
risk if compromised, and its operations may lack transparency. Con-
stant communication between the central and participating nodes
also introduces a significant communication overhead. This over-
head, coupled with a requirement for new participants to wait for
the aggregation result until the current training round concludes,
introduces latency.

PDFed addresses these issues by leveraging federated learning
principles while introducing a decentralized and asynchronous
framework to enhance privacy preservation, model performance,
and training efficiency. Reliance on a centralized server is eschewed
in favor of orchestrating the training process via distributed ledger
technology (DLT), namely the Ethereum public ‘blockchain’. To
address the phenomenon of training data memorization in diffu-
sion models, we propose and integrate a parametric sample-based
score into our training framework, which measures sample nov-
elty, fidelity, and quality. PDFed makes the following two technical
contributions:

(1) Asynchronous, aggregator-free and decentralized federated
learning protocol: PDFed is the first federated learning frame-
work for training diffusion models that does not require a
central coordinator or aggregator. Instead, we take advantage
of the decentralized, leaderless nature of public blockchains,
allowing participants to operate asynchronously and inde-
pendently according to a local training strategy. We also
permit validation-only participants, enabling agents who
hold data but don’t have the hardware resources necessary
for active model training to contribute by voting for the
best scoring of the submitted models, facilitating broader
participation.

(2) A quality-novelty (Q-N) objective is proposed to guide model
training. Generated samples undergo a visual fingerprint-
ing step, followed by a KNN search to obtain a shortlist of
samples close to the training data, implying local memoriza-
tion. The pairs of generated images and training samples
are then passed to a second model, which outputs a content
similarity score for each pair. The proposed metric is based
on this content similarity score and the FID score of all gen-
erated samples. The proposed metric acts as an objective
function within the training framework, aiding in selecting
models for further training, favoring those with lower mem-
orization levels, and successfully driving a trend towards
reduced memorization. Additionally, the score is leveraged
at the data loader level, ensuring that previously identified
memorized training images are excluded from further use in

model training. This method effectively acts as a decentral-
ized, privacy-preserving training data deduplication system
in the distributed training scenario.

2 Related Work
Diffusion models have enabled recent advancements in Generative
AI, producing realistic samples across various modalities such as
images and video. Despite requiring datasets comprising millions
of samples for training, they have been observed to exhibit training
data memorization, particularly in content and style, attributed to
duplicated data within the training dataset. Carlini et al. [Carlini
et al. 2023] and Somepalli et al. [Somepalli et al. 2023] confirm
memorization in diffusion models across datasets of varying scales
and conditioning types and demonstrate that training data dedu-
plication is effective in reducing training data memorization. In a
distributed, privacy-preserving training scenario, participants can-
not know whether they hold duplicate data as other participants
without compromising their data privacy. There’s a research gap
in privacy-preserving, distributed image data deduplication. Stein
et al. [Stein et al. 2023] and Yoon et al. [Yoon et al. 2023] further
explore the conditions that contribute to memorization and identify
several influential factors such as random, uninformative, or highly
specific labels, model capacity, dataset size and complexity, distribu-
tion of rare-common images and concepts, and type of conditioning.
EKILA [Balan et al. 2023a] introduces a framework for identifying
the training samples most influential for a specific generated image,
enabling the authors of those training images to be rewarded for
their contributions.

Memorization metrics. Several metrics have been proposed to as-
sess the novelty, diversity, and fidelity of diffusion model-generated
samples. AuthPct [Alaa et al. 2021] deems each generated sample
either as authentic or inauthentic based on whether the distance to
the nearest point in the training set is less than the distance between
that training sample and its nearest neighbor in the training set.
The 𝐶𝑇 score [Meehan et al. 2020] summarizes how often training
samples are closer to generated samples than to samples in the
test set through a Mann-Whitney hypothesis test[Mann and Whit-
ney 1947]. Jiralerspong et al. [Jiralerspong et al. 2023] propose the
FLD score, a parametric sample-based score that relies on density
estimation in feature space to compute the perceptual likelihood
of generated samples. [Stein et al. 2023] finds that AuthPct [Alaa
et al. 2021], 𝐶𝑇 [Meehan et al. 2020], and FLD [Jiralerspong et al.
2023] scores are only sensitive to memorization in an ideal scenario
where all samples become increasingly memorized and that Auth-
Pct and 𝐶𝑇 scores detect mode shrinking and image fidelity more
than memorization.

Distributed Ledger Technology (the most well known implemen-
tation is ’blockchain’) is a decentralized system that facilitates the
secure and transparent recording of transactions across multiple
nodes or participants. Unlike traditional centralized systems, DLT
does not rely on a single point of control or trust. Instead, it en-
ables consensus mechanisms that allow all participants to agree on
the validity of transactions without the need for intermediaries or
central authorities. While initially popularized by cryptocurrencies
such as Bitcoin, the applications of DLT have evolved beyond fi-
nance, with many innovative applications for social good. DLT has
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been used in digital preservation, where it ensures the integrity and
immutability of data over time[Bui et al. 2019], and in AI training,
to determine author consent for specific data to be used[Balan et al.
2023b]. Smart contracts are self-executing programs automatically
enforced and executed on a blockchain network without interme-
diaries. The event log is a ledger of signals or exceptions emitted
from smart contract code.

Federated Learning addresses data privacy by collaboratively
training models without pooling or exchanging the training data.
[Yang et al. 2023] and [Zhao et al. 2024] propose one-shot FL frame-
works in which workers train diffusion models using their privately
held data, such that data can subsequently be generated conform-
ing to the global class distribution to alleviate the non-IID data
problem. [Tun et al. 2023] explores several FL scenarios for train-
ing diffusion models, investigating the effects of varying the data
heterogeneity across clients, the number of clients, and the number
of training rounds and epochs; they obtain comparable results to
centralized training and find that distinct data distributions lead
to local models being biased towards local data, which can chal-
lenge model aggregation and affect global model performance in
early FL rounds. The inherent technical capabilities of DLT make
it a natural choice for integrating with FL frameworks. [Yun et al.
2023] proposes building a specialized blockchain with a bespoke
consensus mechanism for a federated learning task. [Tomiyama
et al. 2023] abolishes the concept of rounds, allowing workers to
operate independently without the need for synchronization or a
central aggregator. However, nodes’ participation is time-limited.
[Ramanan and Nakayama 2020] proposes an aggregator-free FL sys-
tem, storing the global model as serialized chunks within a smart
contract. Workers place bids to update specific chunks, and the
highest-scoring one pushes the update to the smart contract. In
Blockflow[Mugunthan et al. 2020], all client nodes report evalua-
tion scores for all submitted models, which the smart contract uses
to calculate the weights for model aggregation conducted locally
by all clients. Blockflow enforces strict deadlines during rounds,
removing client nodes that are slower to submit. None of these solu-
tions explore DLT for training diffusion models or seek to mitigate
diffusion memorization specifically.

3 Measuring and Mitigating Memorization
PDFed is a privacy-preserving, decentralized, federated learning
framework for training diffusion models while successfully reduc-
ing private data memorization and building an auditable model
provenance chain, significantly contributing to transparently build-
ing ethical AI models. It is asynchronous and aggregator-free, each
node employing a local training strategy. We now describe PDFed,
first focusing on the proposed methodology for measuring memo-
rization in the trained model, which is used within the FL process
(Sec. 4) to govern model validation and selection.

We propose a method to identify memorized training samples
and a parametric sample-based score that measures the novelty,
fidelity, and quality of images generated by GenAI models. The
score may be implemented as a loss function in GenAI training,
allowing monitoring and measuring the memorization rate and
optimizing training to minimize this behavior. The score is based
on a content similarity score between training data and generated

samples and the widely utilized FID score. Obtaining the content
similarity score is a 3-step process: 1) establishing a distance thresh-
old based on statistical properties of the training data to identify
generated samples unusually close to the training data for further
analysis, 2) partial matching based on image fingerprints extracted
from generated and training data and 3) pairwise verification and
scoring of retrievals from the previous step.

3.1 Model Architectures
3.1.1 Image fingerprinting. Similar to [Balan et al. 2023a], we adapt
the visual fingerprinting approach introduced by [Black et al. 2021]
to generate compact, 256-dimensional embeddings of the generated
and training images, enabling retrieval of visually similar pairs
at scale. The fingerprinting model is trained using a contrastive
learning approach [Chen et al. 2020] to be discriminative of image
content while robust to image degradations and manipulations.

Given an image 𝑥𝑖 , we denote its embedding obtained from a
ResNet-50 model as 𝜙𝑖 = 𝐸 (𝑥𝑖 ) ∈ R256, with 𝜙𝑖 representing an
augmented version of the same image. The training objective is:
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embeddings, and B represents a randomly sampled mini-batch
during training [Balan et al. 2023a].

3.1.2 Image match verification. A shortlist of the top-K candidate
image pair matches is obtained using the previously extracted im-
age fingerprints. The generated query image and each candidate
match retrieved from the training dataset are verified through an
additional pairwise comparison. The spatial feature maps derived
from the fingerprinter model are used to compare the image pairs
as presented in [Balan et al. 2023a]. During training for the match
verification model, the backbone feature extractor model is frozen.

Let 𝐹𝑞 ∈ R𝐻×𝑊 ×𝐷 be the feature map for a query image 𝑥𝑞
and let {𝐹𝑖 }𝑘𝑖=1 be the 𝑘 corresponding retrieval feature maps. Each
feature map is processed with a 1 × 1 convolution to reduce the
dimensionality to 𝐷

4 and then numerous pooled descriptors from a
set of 2D feature map windowsW ⊂ [1, 𝐻 ] × [1,𝑊 ] are extracted,
similar to R-MAC [Tolias et al. 2016]. Let 𝑓 𝑞𝑤 ∈ R

𝐷
4 denote the

GeM-pooled [Tolias et al. 2016] and unit-normalized feature vector
for a window 𝑤 ∈ W and feature map 𝐹𝑞 . The window-pooled
feature vectors are collected as follows:

𝐹𝑞 = [𝑓 𝑞𝑤1 , . . . , 𝑓
𝑞
𝑤|W| ] ∈ R |W|× 𝐷

4 , (2)

with |W| = 55 windows in practice and𝑤𝑖 ∈ W. The correlation
matrix between the features of the query and candidate matches is
computed as:

𝐶𝑞𝑖 = 𝐹𝑞𝐹
𝑇
𝑖 ∈ R |W|×|W| . (3)

This is flattened and fed to a 3-layer MLP, which outputs the simi-
larity score between the query and retrieval images. To make the
model symmetric w.r.t. its inputs, the similarity score between im-
ages 𝑥𝑞 and 𝑥𝑖 is defined as follows, where 𝜎 is a sigmoid activation.

score(𝑥𝑞, 𝑥𝑖 ) = 𝜎
(
MLP(𝐶𝑞𝑖 ) +MLP(𝐶𝑖𝑞)

)
, (4)
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Data augmentation, such as color jittering and random cropping,
as well as minor, benign modifications, manipulations, and degrada-
tion of image content due to noise, format change, compression, and
resolution change are applied to enhance robustness against benign
image alterations [Hendrycks and Dimanetterich 2019]. This is to
model artifacts commonly present in generated images during the
initial and later phases of training GenAI models, such as blurred
and distorted images. Despite the artifacts, this approach allows
us to identify images with an unusually similar style or content as
training data. Positive training pairs are created using augmented
samples, while challenging negative pairs are generated via hard
negative mining. Global average-pooled feature maps of query and
queued examples are compared via cosine similarity for the sam-
pling of negatives. The model is trained using binary cross-entropy
loss on pairs of true and false matches.

3.2 Identifying memorized samples
3.2.1 Intra-class threshold for retrieval distance. Carlini et al. [Car-
lini et al. 2023] propose a method to identify memorized samples
strictly based on L2 distance thresholding. The memorized image
extraction method considers an image as memorized if its L2 dis-
tance to the nearest neighbor in the training set is significantly
lower than that of all other training images.

We draw inspiration from this approach and compute intra-class
distance thresholds rather than individual image thresholds. We
extract image fingerprints from all samples in the training set and
calculate the L2 distance between each image and its closest intra-
class neighbor. We compute the mean and standard deviation of
this distance across each class to determine the threshold 𝑇L2class .
Any generated image whose L2 distance to a training sample falls
below this threshold is deemed unusually close to the training data,
prompting further analysis.

𝑇L2class = mean − (0.5 × stdev) (5)

3.2.2 KNN search. During this step, a KNN search is performed
between each generated sample and local training samples to de-
termine the pairs that fall under the intra-class threshold. The list
of pairs is compiled and passed to the next step.

Unlike Carlini et al. [Carlini et al. 2023], our approach incorpo-
rates L2 search but does not solely rely on it. Instead, it leverages
a bespoke feature extractor and integrates a secondary pairwise
verification stage, as outlined below.

3.2.3 Image match verification. During this step, each pair consist-
ing of a generated sample and a retrieved, unusually similar training
sample is passed to the image match verification model, resulting in
a similarity score(𝑥𝑞, 𝑥𝑖 ) ∈ [0, 1]. We empirically set a 0.8 threshold
for an image match confirmation. There are often duplicates within
training data, and some samples are generated multiple times. Due
to this, each generated sample and training sample may be counted
as memorized only once. This step concludes with a final count of
memorized samples.

3.3 Metric design
Our metric balances sample quality and fidelity against novelty to
robustly evaluate diffusion models.

3.3.1 Novelty. We define novelty as the degree to which generated
samples differ from the training samples. Memorized samples are
simply reproductions of training samples. The three values that
determine the novelty component of our proposed metric are cal-
culated using similarity scores output by the match verification
model as such:

(1) 𝑉𝐴: The mean similarity score of all checked pairs. This value
encompasses the mean similarity score of all pairs passed
to the image match verification model, whether confirmed
or unconfirmed matches. We consider that a novelty score
shouldn’t be influenced solely by those samples that are
unquestionably memorized. Instead, all pairs passed to the
verification model exhibit unusual similarity to training sam-
ples and thus should be accounted for when designing a
robust and multidimensional novelty score. Although un-
confirmed, unusually similar samples to training data may
indicate early signs of memorization.

(2) 𝑉𝐶 : The mean similarity score of all confirmed matches. This
introduces a measure of the similarity between memorized
and training samples, thereby enhancing accuracy compared
to a binary true/false measure.

(3) 𝑅𝐶 : The ratio of confirmed memorized samples to the total
number of generated samples.

3.3.2 Quality and fidelity. To account for the quality and fidelity of
generated samples, our metric incorporates the FID score calculated
between the generated samples and each node’s local test samples.
The feature extractor utilized is DINOv2 ViT-L/14 [Oquab et al.
2024], replacing the traditional Inception-V3, as Stein et al. [Stein
et al. 2023] found this replacement solves the discrepancy with
human evaluators. Consequently, the FID value is notably higher
than expected due to this change.

Our proposed quality-novelty score is computed as follows:

Q-N score =
FID + (𝑉𝐶 ×𝑉𝐴 × 𝑅𝐶 × 1000)

2
(6)

Our Q-N score is customizable - the user may adjust parameters
such as the intra-class distance and match confirmation thresh-
old. Unlike concurrent metrics such as FLD, which necessitates a
minimum of 10,000 generated samples for an accurately reported
score, the Q-N score can be computed irrespective of the train, test,
or generated image set size. Our score also allows for the extrac-
tion of memorized sample pairs, unlike other metrics, which rely
on the statistical properties of the data to identify and measure
memorization rather than conducting pairwise comparisons. The
computational overhead of calculating our score is minimal. Fin-
gerprinting, searching for matches, and verifying an image pair
typically take an average of 41 ms per image. The fingerprinter
model requires a minimum of 1 GB of GPU memory, while the
verifier model requires 2.6 GB of GPU memory.

4 Federated Learning Framework
We introduce an asynchronous, decentralized, and aggregator-free
smart contract-based federated learning protocol explicitly tailored
for diffusion models, aiming to tackle prevalent issues in GenAI and
traditional FL. As depicted in Figure 2, a smart contract is deployed
on a a public blockchain (for experimental purposes we chose the
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Figure 2: System Architecture: client nodes, holding private training/validation data, interact with the federated learning
task smart contract deployed on an Ethereum blockchain. The system design allows nodes to participate asynchronously,
contributing tomodel evaluation and selection while retaining autonomy over training strategies and resource usage. Themodel
weights are stored on peer-to-peer solution IPFS, accompanied by C2PA [Coalition for Content Provenance and Authenticity
2021] manifests. An example manifest is included on the left - a client node describes a model contribution within PDFed.
Highlighted in yellow - C2PA supports specifying ingredient assets; in this case, the IPFS storage CID of the model chosen for
further training is included. Green - this designation enables the client node to describe the submitted model’s training steps.
Blue - using the crypto.addresses assertion, the client node specifies their blockchain wallet address, where payments may be
sent as a reward for their contributions to model training.

Ethereum blockchain network), orchestrating the federated learn-
ing process. The smart contract facilitates the registration of new
client nodes and the submission of new models and votes. It emits
events to notify all listening nodes of these submissions. Events
emitted by the smart contract are transparent and immutable, pro-
viding a record of all actions and decisions made during the FL
process, effectively replacing the centralized server in traditional
federated learning and enhancing the system’s overall resilience.
Our protocol accommodates dynamic participation, enabling nodes
to join or leave the training process at any point without disrupting
the overall workflow.

Each client node holds local data samples and contributes to
the training or validation of the diffusion models. They evaluate
model submissions on their privately held data using our proposed
Q-N metric and submit votes indicating the best-performing model
updates. The other participants then consider these votes in con-
junction with their evaluations when selecting models for further
training. The chosen model is further trained using the client node’s
private training set, which remains private and does not leave their
instance.

The latency incurred by on-chain operations is minimal, as most
operations are read-only, resulting in near-instantaneous responses.
The only essential transaction involving writing to the blockchain is
the model submission, which is typically processed within seconds,
depending on network congestion.

4.1 Local strategy
Traditional federated learning frameworks struggle to accommo-
date hardware heterogeneity among client nodes, leading to sub-
optimal performance and resource utilization. Time-limited train-
ing rounds lead to missed opportunities for valuable data contri-
bution and participation. In contrast, our framework functions
asynchronously, allowing client nodes to participate in training and
validation activities according to a local strategy tailored to their
resources.

Our aggregator-free protocol decentralizes the model selection
process, granting all nodes access to every model update. This pro-
tocol empowers participants to evaluate all available updates inde-
pendently and determine which ones to aggregate and further train.
It protects against malicious actors, as underperforming models will
not be picked up for additional training. Clients can also customize
their strategy by deciding which votes to consider, whether they
prefer input from specific actors (training nodes or validation-only
nodes) or a combination of both. Moreover, clients can adjust their
training process according to their resource availability, training
for as long or as little as necessary.

Another novel feature of PDFed is the support for validation-
only nodes, which evaluate model updates and submit votes based
on their assessment. They may have limited hardware capabilities
but possess valuable data that can contribute to the validation of
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model updates, providing an additional layer of scrutiny, enhanc-
ing the robustness of model evaluation and selection and overall
effectiveness of the protocol. This inherent flexibility facilitates
adoption and broader participation, ensuring optimal performance
across diverse hardware configurations and training scenarios.

4.2 Model Auditability and Incentives
A key component of PDFed is the maintenance of an auditable
chain of model provenance, facilitated by emerging open stan-
dard from the Coalition for Content Provenance and Authenticity
[Coalition for Content Provenance and Authenticity 2021]) and
the corresponding C2PA tool, which allows model authors to bind
provenance information to model files via cryptographically signed
asset ‘manifests.’ These manifests, alongside model files, are stored
within a distributed file system (IPFS). C2PA manifests may bear
information about "ingredient" assets used in the training process,
such as a summary or hash of the private training data and the base
model that was further trained. The base model is accompanied by
its unique manifest and all its previous training assertions, which
are then included in the newmodel’s provenance manifest. For each
subsequent model submission, the client node adds a new training
assertion that contains authorship and training facts and the au-
thor’s blockchain wallet address. This effectively builds a unique
model provenance graph, which grows with each new model sub-
mission, ensuring transparency within the training process. An
example manifest is pictured in Fig. 2.

In conjunction with each model’s C2PA manifest detailing its
provenance, the smart contract enables comprehensive tracking of
all model contributions. Rewards may be apportioned based on the
contributions made by each client node, as detailed in the resulting
model’s manifest. The smart contract can automatically distribute
payments to participants’ blockchain wallets to incentivize and
reward active participation and valuable contributions from client
nodes.

5 Evaluation
5.1 Experimental Setup
We demonstrate PDFed as deployed through a smart contract on a
public Ethereum blockchain and evaluate its performance across
several experiments. The chosen task is to train class-conditional
DDPM [Ho et al. 2020] diffusion models. For this task, we utilize the
CIFAR-10 dataset [Krizhevsky 2009], a commonly used benchmark
dataset in concurrent works [Carlini et al. 2023; Jiralerspong et al.
2023; Somepalli et al. 2023; Tomiyama et al. 2023] and widely used
in many other computer vision tasks. The dataset is divided equally
into training and test sets for each client node, with training setups
involving cohorts of 1 (baseline), 2, 4, 6, and 8 client nodes. An equal
number of images from each class are randomly distributed among
the client nodes for the private data split. The participants train
each model for an equal number of epochs as each other before
model submission (2 nodes: 50 epochs; 4, 6 nodes: 75 epochs; 8
nodes: 100 epochs) to ensure the models have the same degree of
exposure to the data across experiments. Each node generates 1,000
images spread equally across all classes for model evaluation. All
model submissions are evaluated by each client node, reporting all
metrics as calculated over their privately held, local dataset split.

In addition, we compute all metrics for all model submissions as
evaluated on the entire CIFAR-10 dataset.

We design three training setups to evaluate the performance of
our proposed training framework in reducing memorization behav-
ior in GenAI models: 1) 𝐿𝐹𝐿𝐷+𝐹𝐼𝐷 , 2) 𝐿𝑄−𝑁 and 3) 𝐿𝑄−𝑁+𝑑𝑒𝑑𝑢𝑝 .

In the first training setup, referred to as 𝐿𝐹𝐿𝐷+𝐹𝐼𝐷 , the loss func-
tion used by the participants when evaluating and selecting the
top-performing model for further training consists of a blended FID
and FLD score[Jiralerspong et al. 2023], as given by:

𝐿𝐹𝐿𝐷+𝐹𝐼𝐷 =
FID + (FLD × 100)

2
(7)

In the second training setup, referred to as 𝐿𝑄−𝑁 , the loss func-
tion used to evaluate and identify the top-performing model for
further training is given by our quality-novelty score in equation 6,
where 𝐿𝑄−𝑁 = Q-N score.

The third setup, 𝐿𝑄−𝑁+𝑑𝑒𝑑𝑢𝑝 , builds upon the previous one by in-
corporating an additional step at the data loader level to exclude pre-
viously identified memorized training images from further model
training. Training data duplication has been shown to increase
memorization, therefore excluding samples that have previously
been identified as memorized effectively creates a decentralized,
privacy-preserving training data deduplication system. An image-
level count of all identified instances of memorization is kept, which
is then normalized via min-max normalization. Subsequently, the
top 95th percentile of the most memorized samples are excluded
from further training. On average, this results in the exclusion of
1.7% of each node’s local training set, aligning with findings in
[Carlini et al. 2023] and [Stein et al. 2023], which report a 2.5%
rate of training data memorization at the end of model training.
Our lower exclusion rate is attributed to the successful reduction
of memorization and earlier intervention during training. This ap-
proach incurs no additional computational overhead, as memorized
samples are already identified during model evaluation for further
model training choice. To the best of our knowledge, we are the
first to implement this method and demonstrate that excluding
previously memorized samples effectively reduces training data
memorization in subsequent training iterations.

All other training parameters remain identical across experi-
ments, including duration and number of training epochs.

5.2 Baseline memorization metrics
We baseline using three recent metrics to measure memorization
in GenAI models.

AuthPct [Alaa et al. 2021] deems each generated sample either
authentic or inauthentic and returns the fraction of authentic sam-
ples. Inauthentic samples are those for which the distance to the
nearest point in the training set is less than the distance between
that training sample and its nearest neighbor in the training set.

𝐶𝑇 [Meehan et al. 2020] analyzes the training, test, and generated
sample sets and summarizes how often training samples are closer
to generated samples than they are to test samples through a Mann-
Whitney hypothesis test[Mann and Whitney 1947]. The data is
partitioned into several cells using k-means clustering; the score is
computed in each cell and averaged to obtain the final score.

FLD [Jiralerspong et al. 2023] is defined as the percentage of over-
fit Gaussians identified. The difference between the log-likelihoods
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Figure 3: Left: All metrics reported on the baseline experiment evaluated along the training process on the entire CIFAR-10
dataset. Right: a) were trained with the objective 𝐿𝐹𝐿𝐷+𝐹𝐼𝐷 and b) were trained with the objective 𝐿𝑄−𝑁 , for experiments with 2
and 6 client nodes. The scores represented are Q-N score (green), AuthPct (red), FLD (pink), and𝐶𝑇 (blue). Our proposed training
method using 𝐿𝑄−𝑁 decreases memorization and our proposed Q-N metric is more sensitive to recognizing memorization
behavior than all other metrics.

Table 1: Comparison of training framework performance evaluated on the entire CIFAR-10 dataset by averaging the scores
obtained across the 10 latest model submissions. Column # represents number of clients and * shows that the Q-N score is
reported as x10-3.

# Training run with LFLD+FID Training run with LQ−N Training run with LQ−N+dedup
AuthPct↑ CT ↑ FLD↓ FID↓ Q-N* ↓ AuthPct↑ CT ↑ FLD↓ FID↓ Q-N* ↓ AuthPct↑ CT ↑ FLD↓ FID↓ Q-N* ↓

2 30.65 11.75 6.26 624.22 3.721 30.09 12.19 6.43 640.68 3.730 30.76 11.55 7.13 692.01 1.643
4 29.07 12.25 8.47 750.02 2.364 30.36 11.48 7.31 676.68 2.053 31.5 12.1 7.46 709.85 1.607
6 30.82 11.99 7.92 738.6 2.043 30.04 12.32 8.07 723.56 1.840 30.63 12.58 8.08 741.31 1.228
8 27.71 11.4 8.17 755.02 1.705 29.25 11.48 9.08 800.07 1.573 29.98 12.37 8.04 725.23 1.103

under the training and test sets is calculated for each generated
sample. The metric reports the percentage of generated samples
for which the log-likelihood was higher under the training set
than the test set. We use the default implementation from https:
//github.com/marcojira/fld, which also incorporates the original
implementations of AuthPct and 𝐶𝑇 .

5.3 Evaluation compared to baseline scores
In the first experiment, a pool of 100,000 generated images is created.
The generated images are gradually replaced by training images
until, finally, the training data makes up 100% of the pool. Memo-
rization between the training set and the image pool is measured
using the Q-N, FLD, AuthPct, and 𝐶𝑇 scores. All scores trend in a
direction indicating increased memorization. Our proposed Q-N
score reaches an accuracy of 98.94% for identifying memorized
samples. In contrast, the other scores each operate on their own
respective scales and provide measures of memorization, but they
do not directly support the extraction of memorized sample pairs as
our Q-N score does, thus preventing the calculation of an accuracy
rate.

We run experiments training diffusion models according to the
three previously outlined training setups:1) 𝐿𝐹𝐿𝐷+𝐹𝐼𝐷 , 2) 𝐿𝑄−𝑁
and 3) 𝐿𝑄−𝑁+𝑑𝑒𝑑𝑢𝑝 . We calculate the mean of the Q-N score re-
ported by each client node for each model submission and plot the
results from the first and second training setups for comparison
in Fig. 3. The right shows the mean Q-N, FLD, AuthPct, and 𝐶𝑇
scores reported by each node for each model submission. Notably,
while our proposed metric exhibits an upward trend, suggesting
higher rates of memorization as model training progresses, the FLD,
AuthPct, and 𝐶𝑇 scores tend to plateau or even trend in directions,
indicating a decrease in memorization. Higher AuthPct and 𝐶𝑇
scores indicate less memorization, whereas lower FLD indicates
less memorization.

One explanation for the observed behavior of FLD, AuthPct, and
𝐶𝑇 scores is their sensitivity to the test set size. FLD and AuthPct
require a minimum of 10,000 samples for an accurate evaluation
and recommend using the entire train and test sets to compute
the metric [Jiralerspong et al. 2023] — a method unsuitable for the
federated learning scenario, where datasets are distributed across
multiple nodes, and participants typically have varying amounts
of data. Similarly, sample set size is a limitation for the 𝐶𝑇 score;

https://github.com/marcojira/fld
https://github.com/marcojira/fld
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Figure 4: The lines represent the moving average of our proposed Q-N score, measured across the three training tasks - Orange
used the loss function 𝐿𝐹𝐿𝐷+𝐹𝐼𝐷 ; Green trained with the objective 𝐿𝑄−𝑁 ; Pink trained with the objective 𝐿𝑄−𝑁 and excluded
memorized training samples from further training at the dataloader level. We observe that training using our proposed loss
function significantly reduces the extent of memorization in diffusion models, regardless of the number of participants. In
addition, excluding memorized samples from further training significantly reduces memorization and is the most effective of
the three methods.

without sufficient samples, the metric not only exhibits higher vari-
ance, but the ability to finely partition the instance space is reduced,
which leads to mischaracterization and measurement errors [Mee-
han et al. 2020]. In contrast, our proposed Q-N metric maintains
accuracy regardless of sample set size, making it more cost-effective,
robust and adaptable to real-world scenarios with limited resources,
particularly within the federated learning context. Another limi-
tation of the FLD and 𝐶𝑇 scores is that in addition to the training
and generated sample set, they also utilize the test set for their
calculation. This assumes that the training and test datasets are
non-overlapping, which is often not the case in practice [Barz and
Denzler 2020]. Our proposed Q-N metric doesn’t have this limita-
tion, effectively measuring memorization without the need for the
test set.

The graphs in Fig. 3 show that our training method using 𝐿𝑄−𝑁
decreases memorization and is more sensitive to recognizing mem-
orization behavior than all other metrics.

On the left, all scores for the baseline experiment are shown and
measured at various points in the training process. This model was
trained traditionally, outside of a federated learning framework. As
expected, memorization increases as training progresses. Unlike
our proposed Q-N metric, the AuthPct,𝐶𝑇 , and FLD scores level out
after only 1,000 epochs, failing to detect the memorization behavior
the Q-N metric is able to identify as training progresses.

5.4 Evaluating our objective function’s effect on
memorization

Figure 4 shows that for each experiment, training models using
the proposed 𝐿𝑄−𝑁 function based on our Q-N score succeeds in
significantly reducing the extent of memorization in diffusion mod-
els, as compared to models trained using 𝐿𝐹𝐿𝐷+𝐹𝐼𝐷 . In addition,
the experiments show that excluding memorized samples from fur-
ther training within the 𝐿𝑄−𝑁+𝑑𝑒𝑑𝑢𝑝 training setup significantly
reduces memorization and is the most effective of the three meth-
ods.

Table 1 presents the mean scores of the 10 latest model submis-
sions across all training setups, evaluated using the entire CIFAR-10

dataset rather than individual node data splits. We draw three con-
clusions: 1) that training using our proposed methods is successful
in decreasing the extent of memorization while all other metrics,
including FID, remain roughly the same, 2) that the more nodes
there are and the fewer data they each hold, the longer it takes for
a model to reach the same image generation quality. However, the
level of memorization exhibited is significantly lower. 3) the level
of memorization decreases the more participants are involved in
training, even when our proposed objective function isn’t used in
training but our proposed federated learning framework is.

6 Conclusion
Our experiments demonstrate that the proposed decentralized,
asynchronous federated learning framework (here experimentally
implemented using a blockchain), in conjunction with the Q-N
score, successfully reduces training data memorization in diffusion
models. We leverage the decentralized, leaderless nature of public
blockchains, enabling participants to operate asynchronously and
independently with local training strategies, while also considering
validation-only participants to foster broader participation. Our pro-
posed metric shows greater sensitivity in detecting memorization
behavior across various training setups, outperforming concurrent
metrics. These findings underscore the importance of incorporat-
ing novel evaluation strategies, like our proposed Q-N score, to
ensure training data privacy and enhance the generalization of
GenAI models. Future efforts should focus on integrating our loss
function within the training code of diffusion models and further
exploring decentralised federated learning solutions to enhance
privacy, transparency, and efficiency for ethical and collaborative
AI training. PDFed has the potential to reshape the creative industry
by fostering a more equitable AI ecosystem for artists and creators.
Thus, future work should study the socio-economic drivers neces-
sary to ensure the adoption and sustainability of truly decentralised,
peer-to-peer GenAI training, especially considering input from the
creative sector.
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