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1 Introduction

We introduce several additional ablation experiments, provide implementation
details, and provide qualitative results that could not be included in the paper
due to space limitations.

2 Implementation Details

2.1 Feature Extraction

Features are extracted from a pre-trained I3D network [6] trained on the Kinetics-
600 dataset [2,?] in a supervised setting. We extract the optical flow and RGB
output embeddings, which are then concatenated to form a 2048×T embedding,
where T is the total number of video segments. Each video segment refers to 16
frames sampled at 30 FPS with a stride of 4 frames. This is the standard feature
extraction pipeline used in all previous TAL works [4,?]. To deal with variable
frame lengths T , we pad all samples to T = 2048, which accounts for the length
of all videos. During training, we include a mask to represent the zero-padded
regions and apply the mask after each operation.

2.2 Training

We train each model for 100 epochs, except for when we increase the number of
shots above 15, in which case we train for 200. We randomly initialize the ctx
embedding vectors and append them to the start of the prompt. All models are
trained with a batch size of 2 on a single NVIDIA RTX 3090 24GB GPU. The
memory required for training the model on THUMOS’14 with a batch size of 2
and when N = 4 is 5GB. We include a summary of the method in alg:fstal.
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Algorithm 1 Overview of TAL-PLOT method

Input: Untrimmed input video V
Output: Action instances Y = {y1, y2, . . . , yN}
1: Feature Extraction and Representation:
2: for t = 1 to T do
3: Extract feature vector xt = fCNN(vt) using a 3D CNN
4: Refine features x′

t = fconv(xt) with a 1D convolutional layer
5: end for
6: Adaptive Prompt Learning:
7: for each action category k do
8: Generate N prompts Pk = {Pk1, Pk2, . . . , PkN} using fCLIP

9: end for
10: Optimal Transport with Sinkhorn Algorithm:
11: for each action category k do
12: Align features {x′

1, . . . , x
′
T } with prompts Pk using OT

13: end for
14: Temporal Pyramid and Feature Integration:
15: Construct temporal feature pyramid X ′

l with max-pooling
16: Multi-Resolution Temporal Alignment:
17: for l = 1 to L do
18: Align features at level l of the pyramid with Pk

19: end for
20: Decoder Architecture:
21: Use aligned features to predict action labels Ψ and boundaries Ol

22: Learning Objective:
23: Minimize total loss Ltotal with Focal Loss and DIoU Loss
24: return Y

2.3 Optimal Transport

As discussed in the main paper. The optimal transport is optimized in a two-stage
process as proposed in [1] where we find the transport cost between the video
features and prompts in the inner loop. After converging the Sinkhorn algorithm,
we use the backward pass to update the learnable prompts. For the parameters,
we follow the setup in [1] where δ = 0.01, λ = 0.1, and we perform 100 iterations
within the inner loop. We generate results over 4 random seeds and report the
average. Further details are provided in alg:detailedOTsinkhorn.

3 Ablation Experiments

3.1 Number of Learnable Context Tokens

We state in the paper that each prompt has several learnable context tokens as
described in [5] and [3]. These context tokens are randomly initialized so that
for the class ‘Basketball Dunk’ with 4 ctx tokens, the full prompt will be

P = {X,X,X,X,Basketball Dunk} (1)
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Algorithm 2 Optimal Transport Sinkhorn Algorithm for Few-Shot TAL

Input: Untrimmed input video V, pretrained model features fCNN, number of prompts
N , entropy parameter λ, maximum number of iterations Tin, Tout

Output: Optimized prompt parameters {ωn}Nn=1

1: Initialize prompt parameters {ωn}Nn=1

2: for tout = 1 to Tout do
3: Obtain a visual feature set F ∈ RM×C with the visual encoder fCNN(xt)
4: Generate prompt feature set Gk ∈ RN×C for each class with textual encoder

g(labelk, ctxk1, . . . , ctxknctx)
5: Calculate the cost matrix Ck = 1− F⊤Gk for each class
6: Calculate the OT distance with an inner loop:
7: Initialize v(0) = 1, δ = 0.1,∆v = ∞
8: for tin = 1 to Tin do
9: Update u(tin) = u/(exp(−C/λ)v(tin−1))
10: Update v(tin) = v/(exp(−C/λ)⊤u(tin))
11: Update ∆v =

∑
|v(tin) − v(tin−1)|/N

12: if ∆v < δ then
13: Break
14: end if
15: end for
16: Obtain optimal transport plan T ∗

k = diag(u(t)) exp(−Ck/λ)diag(v
(t))

17: Calculate the OT distance dOT(k) = ⟨T ∗
k , Ck⟩

18: Calculate the classification probability pOT(y = k|x) with the OT distance
19: Update the parameters of prompts {ωn}Nn=1 with cross-entropy loss LCE

20: end for
21: return Optimized prompt parameters {ωn}Nn=1

Fig. 1. mAP over various IoU thresholds for the THUMOS’ 14 dataset with variable
number of additional context tokens appended to each N prompt.
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In fig:iou and tab:performancescores, weshowtheeffectofvaryingthenumberoflearnablectxtokensappendedtoeachprompt.ForeachNprompt,nctx
tokens are randomly initialized. The figure shows that the optimum number of
tokens is between 10 and 20. As per the existing literature [5,?], we select 16
tokens for all methods unless otherwise stated and train and test using the 5-shot,
20-way setup as described in the paper.

Table 1. Ablation experiment on the number of context tokens on the THUMOS’14
Dataset.

Ctx Tokens 0.3 0.4 0.5 0.6 0.7 avg

1 52.25 46.94 40.73 31.26 20.17 38.27
10 54.94 49.55 42.49 31.14 20.08 39.64
16 56.42 50.54 42.48 32.35 21.17 40.59
20 53.39 48.38 42.19 33.00 20.78 39.55
30 50.27 45.54 38.30 29.64 18.83 36.52
40 53.55 47.30 40.35 31.06 19.46 38.34

3.2 Visual Feature Embeddings

To evaluate the effectiveness of adding motion information via optical flow,we also
performed additional experiments using only the RGB embeddings, the optical
flow embeddings, and RGB CLIP embeddings from a ViT-B-16 encoder, with re-
sults shown in tab:embeddingresults.TheresultsshowthattheCLIPembeddingsperformbetterthantheRGBembeddingsfromtheI3Dnetwork↑
2.67. This is because of the implicit alignment between the image and text en-
coder embeddings before temporal convolution. However, when combined with
optical flow, the performance is improved by a large margin of ↑ 7.56, demonstrat-
ing the improved classification ability of the network when we add additional
temporal information via optical flow.

Table 2. Comparison of mAP scores for various visual input embeddings on the THU-
MOS’14 dataset.

Embeddings 0.3 0.4 0.5 0.6 0.7 avg (mAP)

CLIP 46.99 42.09 34.26 25.34 15.82 32.90
RGB 43.13 38.76 31.71 23.15 14.46 30.24
Optical Flow 26.03 23.10 19.54 14.07 8.93 18.33
RGB + Flow 55.88 50.21 43.06 31.97 21.16 40.46

4 Visualisation Results

In fig:tplot, weshowthenormalizedtransportcostforeachframeandNembeddingfortheclasslabel‘CricketShot′.ThisfigureshowshoweachoftheNpromptsdivergeandfocusondifferentelementsandviewswithinthevideos.Forexample, wecanseethatN1

or Prompt 1 learns global information across all frames. This shows how, in a
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Fig. 2. The normalized transport cost of each N prompt for the class ‘Cricket Shot’
after training. Prompt one aligns with global information, while the other prompts
learn additional, complementary views. In the transport cost algorithm, a lower value
indicates closer alignment.

single prompt framework, we may distribute alignment across all frames and
lose disciminative ability, since it learns global information over the whole video.
In the figure, we can note that Prompt 4 appears to learn background informa-
tion and is more closely aligned to frames where we can see the stadium stands.
Prompts 2 and 3, however, indicate a closer alignment with objects related to the
class of ‘cricket shot,’ including when the cricket strip is in the shot and there
are people on the field.

5 Prompt Engineering

We demonstrate how including crafted prompts can help to boost performance.
In tab:sportsactions, weshowthepromptsgeneratedbyGPT3.5withtheprompt −
‘Generate prompts for a temporal action localization task for the following class IDs. The prompts should include objects, the action, and some indication of the moment when the action occurs. We anticipate that further prompt engineering strategies will yield improved results.
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Table 3. GPT generated descriptions for PLOT-TAL Verbose on THUMOS’14 Dataset.

ID Description

7 The precise moment a baseball player winds up and releases the ball
towards the batter

9 The instant a basketball player leaps into the air to forcefully slam the
ball through the hoop

12 The exact moment the cue stick strikes the cue ball, initiating the
billiards shot

21 The moment a weightlifter hoists the barbell from the ground to over-
head in one fluid motion

22 The split second a diver leaps off the cliff edge, beginning their descent
into the water below

23 The moment a cricket bowler releases the ball towards the batsman
with a swift arm motion

24 The precise moment the batsman swings the bat to strike the cricket
ball

26 The instant a diver jumps off the board, tucking and twisting before
plunging into the pool

31 The moment a frisbee is caught by a leaping player, securing it firmly
in their hands

33 The exact moment a golfer swings the club, making contact with the
ball to send it flying

36 The moment an athlete spins and releases the hammer, propelling it
into the air

40 The split second an athlete takes off over the high jump bar, attempting
to clear it without touching

45 The precise moment the javelin is thrown, with the athlete’s arm ex-
tending forward in a powerful motion

51 The instant an athlete sprints and leaps into the air to cover the maxi-
mum distance before landing in the sand pit

68 The moment an athlete plants the pole in the box and vaults over the
bar, pushing themselves upwards

79 The exact moment the shot is put from the neck, using one hand, in a
pushing motion through the air

85 The moment a soccer player strikes the ball with their foot aiming to
score a penalty kick

92 The precise moment a tennis player swings their racket to strike the
incoming ball

93 The instant an athlete spins and releases the discus, hurling it into the
designated sector

97 The moment a volleyball player jumps and forcefully spikes the ball
over the net towards the opponent’s court
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