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Abstract

Few-shot temporal action localization (TAL) methods that
adapt large models via single-prompt tuning often fail to
produce precise temporal boundaries. This stems from the
model learning a non-discriminative mean representation
of an action from sparse data, which compromises gener-
alization. We address this by proposing a new paradigm
based on multi-prompt ensembles, where a set of diverse,
learnable prompts for each action is encouraged to special-
ize on compositional sub-events. To enforce this specializa-
tion, we introduce PLOT-TAL, a framework that leverages
Optimal Transport (OT) to find a globally optimal align-
ment between the prompt ensemble and the video’s temporal
features. Our method establishes a new state-of-the-art on
the challenging few-shot benchmarks of THUMOS’ 14 and
EPIC-Kitchens, without requiring complex meta-learning.
The significant performance gains, particularly at high loU
thresholds, validate our hypothesis and demonstrate the su-
periority of learning distributed, compositional representa-
tions for precise temporal localization.

1. Introduction

Temporal Action Localization (TAL) is the task of identi-
fying the start, end, and class labels of actions in contin-
uous videos. While the success of state-of-the-art models
has been predicated on access to vast, densely annotated
datasets, for TAL to be deployed robustly in real-world ap-
plications where data is inherently scarce, these networks
need to be able to efficiently learn from only a few samples.

The current strategy for tackling this low-data regime
involves adapting large Vision-Language Models (VLMs)
[19] via parameter-efficient prompt tuning [35]. However,
the limitations of this paradigm become critically apparent
in the few-shot setting. By learning a single prompt per
class, the model is forced to compress the entire dynamic
structure of an action into a single feature vector. This rep-
resentational bottleneck is severely exacerbated when learn-
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ing from limited samples. With only a handful of examples,
a single prompt is prone to memorizing superficial, non-
generalizable cues (e.g., the specific camera angle or back-
ground clutter) present in the few shots, leading to poor gen-
eralization to novel contexts.

In this work, we propose that robust few-shot generaliza-
tion stems not from learning a single, monolithic concept,
but from discovering the underlying compositional struc-
ture of actions. For example, an action like a ‘high jump’ is
a composition of simpler, more reusable sub-events (‘run-
ning’, ‘leaping’, ‘arching the back’). Learning these dis-
entangled concepts from sparse data is a more tractable
problem. Consequently, we depart from the single-prompt
paradigm and propose modelling each action class with a
set of diverse, learnable prompts.

This approach requires a mechanism to guide the spe-
cialization of these prompts and prevent their collapse into
redundancy. For this, we introduce Optimal Transport (OT)
[5], not merely as a matching algorithm, but as a struc-
tural regularizer that enforces representational diversity. By
seeking the most efficient assignment between the distribu-
tion of prompts and the distribution of temporal features,
OT implicitly ensures that each prompt finds a unique role
in explaining the data. This constraint is a powerful tool
against overfitting, preventing the entire set of prompts from
aligning with the most prominent feature in the few training
examples, thereby fostering a diverse and highly generaliz-
able final representation.

Our contributions are as follows:

* We identify the single-prompt architecture as a key source
of poor generalization in few-shot TAL.

* We propose a multi-prompt, OT-regulated framework
as a direct solution, arguing it learns a more composi-
tional representation inherently better suited to low-data
regimes.

* We provide extensive empirical validation, demonstrating
state-of-the-art performance on multiple benchmarks.



PLOT-TAL |

CL “Preparation”

butatg otdwh10 :TeqeT I9

W ctx 2

1
1
......... Joked  ctx 3
- 1
1
1

_________________________________________________

Figure 1. Conceptual Framework: Compositional Learning for Few-Shot Generalization. A single prompt trained on a few examples
of “diving” in a specific context (top-right) tends to overfit to environmental cues like the cliffs and sea. This holistic representation
fails to generalize to a novel environment. In contrast, our method (bottom right) learns an ensemble of prompts that specialize on the
compositional, environment-agnostic sub-events of the action: (1) the preparation/stance, (2) the mid-air rotation, and (3) the water entry
splash. Optimal Transport is the key mechanism that enforces this specialization, ensuring the prompts remain diverse and discriminative.
By identifying these core components, our framework can robustly localize the “diving” action with high precision, even when presented
with a completely different environment, such as an indoor swimming pool (left panel), using only a few samples.

2. Related Work

The field of TAL has evolved from two-stage methods,
which first generate proposals and then classify them [7,
12, 13], towards more efficient single-stage architectures.
These unified models, inspired by advances in object detec-
tion [15, 20], perform classification and boundary regres-
sion in a single pass. Recent state-of-the-art methods fre-
quently leverage Transformer-based backbones [24] com-
bined with feature pyramid networks (FPNs) to handle ac-
tions at multiple temporal scales [4, 21, 31]. While power-
ful, these models’ performance relies on large-scale super-
vision, a limitation our work aims to address.

2.1. Few-Shot Learning for Action Localization

Adapting TAL to the few-shot setting has primarily been
explored through meta-learning [28, 29]. These methods
train a model to quickly adapt to novel classes by learn-
ing across a distribution of tasks, or “episodes.” While
effective, they often involve complex, multi-stage training
schedules. Other approaches have tackled zero-shot TAL
[18], but often rely on external cues from pre-trained classi-
fiers like UntrimmedNet [26], which may not be available in
practical scenarios. Our approach provides a simpler, end-
to-end framework for few-shot learning that circumvents
complex meta-learning and external dependencies.

2.2. Prompt Learning in Vision

Prompt learning has emerged as a parameter-efficient
method for adapting large, frozen VLMs to new tasks
[34, 35]. By only tuning a small number of context vec-
tors prepended to a text prompt, these methods can steer the

model’s behaviour without updating all of its parameters.
This has been applied to action recognition [9] and video-
text alignment [11], but its application to the fine-grained
task of localization remains under explored. Works like [17]
have combined prompting with meta-learning, but our work
focuses on a more direct adaptation for few-shot TAL and
extends to multiple prompts.

2.3. Optimal Transport in Machine Learning

The Optimal Transport (OT) problem, originating from the
work of Monge [25], provides a principled way to mea-
sure the distance between probability distributions. Its ap-
plicability to machine learning was greatly expanded by
the introduction of entropic regularization and the efficient
Sinkhorn algorithm [5], which made it computationally
tractable for high-dimensional data. OT has since been
applied to various vision tasks [23]. Most relevant to our
work is Chen et al. [3], who first used OT to align multiple
prompts to feature maps for few-shot image classification.
Our primary contribution is the novel adaptation and valida-
tion of this concept for the temporal domain, demonstrating
that OT is a powerful tool for modelling the dynamic, com-
positional structure of actions over time—a fundamentally
different and more complex problem than static image clas-
sification.

3. Methodology

We propose a novel framework for Temporal Action Local-
ization (TAL), which we term PLOT-TAL. Our approach
integrates pre-trained feature extraction, adaptive multi-
prompt learning, and an efficient feature-prompt alignment
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Figure 2. An overview of the PLOT-TAL framework. (A) We
first extract T' frames from a video V. (B) An ensemble of NV
learnable prompts is generated for each class. (C) Video features
are extracted by a frozen visual encoder and text prompts by a
frozen VLM text encoder (CLIP). (D) A temporal feature pyramid
is constructed via max-pooling. (E) Optimal Transport aligns the
prompt ensemble with video features at each pyramid level. (F)
The resulting features are passed to lightweight localization heads
to predict action instances and a class label. Only modules marked
with a flame symbol contain trainable parameters.

mechanism based on the Sinkhorn algorithm for Optimal
Transport. The framework is designed to be parameter-
efficient and is trained end-to-end. An overview of the net-
work architecture is presented in Figure 2.

3.1. Problem Formulation

We first formally define the task. Given an untrimmed
input video, represented as a sequence of feature vectors
VY = {vy1,Va,..., vy}, the objective of TAL is to predict a
set of action instances ) = {(s;, e;, ¢;)}M ;. Each tuple de-
notes an action of class ¢; € {1,...,C} starting at time s;
and ending at time e;, where the temporal boundaries must
satisfy 1 <s; <e; <T.

In the few-shot setting this paper addresses, the model
must learn to perform this task for all C' classes using only
a small number, K, of annotated support examples for each
class (e.g., K = 5). This constraint requires a model that
can generalize effectively from sparse data while minimiz-
ing the number of trainable parameters to prevent overfit-
ting.

3.2. Multi-Scale Feature and Prompt Representa-
tion
Our framework is designed to capture actions at varying

temporal scales by using hierarchical representations for
both visual features and textual prompts.

3.2.1. Temporal Feature Pyramid

The input video is first processed by a frozen, pre-trained
3D Convolutional Network (e.g., I3D [2]) to extract a
sequence of clip-level feature vectors {xi,...,xr}. To

enhance local temporal context, this sequence is passed
through a series of 1D temporal convolutional layers, fol-
lowing modern TAL architectures [22, 31]. This yields a
refined feature sequence {x'y, ..., x'r}. From this base se-
quence, we construct a temporal feature pyramid of L lev-
els by applying successive max-pooling operations with a
stride of 2. This results in a set of multi-scale feature repre-
sentations {Fy,...,F}, where each matrix F; € RT:*P
contains the feature sequence at temporal scale [.

3.2.2. Adaptive Multi-Prompt Ensembles

To address the limitations of a single-prompt representa-
tion, we model each action class ¢ with an ensemble of NV
diverse, learnable prompts. Each of the N prompts is con-
structed by prepending a unique set of n learnable context
vectors to the class name: [ctxq,...,cCtxX,, ,class_name.].
This set of N textual prompts is then passed through the
frozen text encoder of a pre-trained VLM like CLIP [19].
The process is formalized as:

gci = feup(class_name., {ctxc;;} 7<) (1

where g.; is the i-th prompt embedding for class c. This
yields a set of prompt embeddings G, = {gc1,-.-,8:N} €
RN*D " The only trainable parameters in this module are
the context vectors {ctx}, ensuring our approach remains
highly parameter-efficient.

3.3. Multi-Resolution Alignment via Optimal
Transport

The core technical contribution of our work is the mecha-
nism for aligning the prompt ensemble G, with the tempo-
ral feature sequence F; at each pyramid level .

3.3.1. Optimal Transport Formulation

We formulate the alignment as a distribution matching prob-
lem. For a given class ¢ and level [, we treat the set of T}
video features and N prompt embeddings as empirical sam-
ples from two discrete probability distributions, U; and V.,
respectively:

T N
U= udy and Vo= v;dg )
i=1 j=1

where §. is the Dirac delta function, and u and v are uni-
form probability vectors (i.e., u; = 1/T}, v; = 1/N). We
define a cost matrix C € R71*" where each entry C;; is the
cosine distance between the video feature f; and the prompt
embedding g;. The goal of OT is to find a transport plan
T € RT*N that minimizes the total transportation cost.
We use the entropically regularized formulation, solvable
efficiently via the Sinkhorn algorithm [5]:

dor(Fi, Ge) = Teri}gfllv)<Ta C) — AH(T) 3)



Algorithm 1 PLOT-TAL Optimization Loop

1: Input: Video features {F;}~_,, class labels {c}

2: Output: Optimized context vectors {ctx}

3: Initialize learnable context vectors {ctx}

4: for each training iteration do

5 for each class c and pyramid level [ do

6: Generate prompt embeddings G € RV*P
7: Calculate cost matrix C; . = 1 — F;G /[
8
9

//— Inner Loop: Sinkhorn Algorithm —
Initialize v + 1/N

10: for t;,, = 1to T}, do

11: u < 1/(exp(—Ci.c/N)v)

12: v + 1/(exp(—Cy../A) Tu)

13: end for

14 Compute transport plan T . from u, v

15: Compute OT distance dor(l, ¢) = (T} ., Ci.c)
16: end for ’

17: //— Outer Loop —

18: Compute final predictions using aligned features

19: Compute total loss Ly (Eq. 4)

20: Backpropagate gradients from Ly to update {ctx }
21: end for

22: return Optimized context vectors {ctx}

Here, (-,-) is the Frobenius dot product, H(T) is the en-
tropy of the transport plan, and A is a regularization param-
eter. The resulting optimal transport plan T* represents a
soft, many-to-many assignment map.

3.3.2. Optimization

This alignment process is embedded in a two-stage opti-
mization loop as proposed in [3]. In the inner loop of each
training step, we fix the model parameters and iteratively
solve Eq. 3 to find the optimal transport plan T}. In the
outer loop, with the transport plans fixed, we compute the
final task loss and backpropagate the gradients through the
OT process to update the learnable prompt context vectors.
For the OT-specific parameters, we follow the setup in [3],
setting the convergence threshold § = 0.01, the entropy pa-
rameter A = 0.1, and we perform a maximum of 100 iter-
ations within the inner Sinkhorn loop. A detailed overview
of this process is provided in Algorithm 1.

3.4. Decoder and Learning Objective
3.4.1. Decoder Architecture.

Following the multi-scale alignment, the resulting features
are passed to two lightweight, parallel heads for the final
predictions: a classification head that generates a probabil-
ity distribution over the C' classes using a sigmoid activa-
tion, and a regression head that predicts the temporal offsets
to the start and end boundaries of a potential action using a
ReLU activation.

3.4.2. Learning Objective

The network is trained end-to-end by minimizing a total loss
function, L. We use the Focal Loss (L) [14] for clas-
sification and the Distance-IoU (DIoU) Loss (L) [32] for
regression. The total loss, aggregated over all temporal lo-
cations ¢ and pyramid levels [, is:

Etotal = ! Z (Ecls(élta Clt)

NOS
P L (4)

+ )\7’eg 1 {c1: >0} Lreg (6lt7 0lt)>

where ¢;; and 0y are the predictions, Ny, is the number of
positive samples, and the indicator function 1., applies the
regression loss only to foreground frames.

4. Experiments

We conduct a comprehensive set of experiments to rigor-
ously validate our proposed framework, PLOT-TAL.

4.1. Experimental Setup
4.1.1. Datasets and Metrics

Our evaluation is performed on two standard, yet diverse,

benchmarks for temporal action localization:

« THUMOS’14 [8] is a widely used dataset featuring 20
classes of sports actions in 200 validation and 213 test
videos.

* EPIC-Kitchens-100 [6] is a large-scale egocentric
dataset. We evaluate on both the verb (97 classes) and
noun (300 classes) localization tasks.

Following standard protocols, we report the mean Average

Precision (mAP) at various Intersection over Union (IoU)

thresholds: [0.3, 0.4, 0.5, 0.6, 0.7], and report the average

of these as our primary metric.

4.1.2. Few-Shot Protocol and Comparison to Prior Work

All our experiments are conducted under a 5-shot, C-way
protocol, where C'is the total number of classes in the re-
spective dataset. In this challenging setup, the model learns
from only 5 examples per class and must then localize ac-
tions from among all C' classes simultaneously during test-
ing. This differs significantly from the episodic 5-shot,
5-way meta-learning protocol used in some prior works
[10, 16]. Due to this fundamental difference in task diffi-
culty, results from those works are presented for context but
are not directly comparable.

4.1.3. Baselines

We compare PLOT-TAL against three strong baselines

trained under the exact same few-shot protocol for a fair

comparison:

1. Linear Probe (LP): A linear classifier trained on top of
the frozen video features.



2. CoOp [35]:
method.

3. Ours (Avg.): An ablation of our model where the N
prompts are combined by simple averaging, removing
the Optimal Transport module.

The canonical single-prompt learning

4.1.4. Implementation Details

We use standard I3D (RGB+Flow) features for THU-
MOS’14 and SlowFast for EPIC-Kitchens. Models are
trained for 100 epochs using the Adam optimizer with a
batch size of 2 on a single NVIDIA RTX 3090 GPU. Based
on our ablation studies, we set the number of prompts
N = 6 and context tokens n.;, = 16. The OT regular-
ization ) is set to 0.1 following [3]. All results are averaged
over 4 random seeds.

4.2. Evaluation

This section evaluates our approach against existing meth-
ods for both few-shot temporal action localisation and
prompt learning. To compare with previous works, we re-
port the mean average precision (mAP) at various intersec-
tions over union for all results.

4.2.1. THUMOS-14

In Tab 1, we show results for 5-shot 20-way TAL on the
THUMOS’14 dataset for our approach PLOT-TAL CLS.
Adding additional class prompts can improve performance
over a single prompt by a large margin (1 5.9). We also
show how it’s possible to achieve higher accuracy by hand-
crafting prompts (Verbose). In this setting, we use GPT-3.5
[1] to produce additional descriptions of the actions that will
replace the class label.

The Baseline I method represents performance when
we add additional prompts but exclude optimal transport,
demonstrating how optimal transport is highly effective at
aligning the features (T 15.77). While Baseline /1 (linear
probe) based on the work of [19] and [3] has an average
performance of 5% less than our method.

In Fig 3, we demonstrate how the optimal transport im-
proves performance at higher IoU thresholds than single
prompt or linear probe methods.

At low IoU thresholds, the predicted segment only needs
to overlap with a small section of the ground truth, mean-
ing that single prompt methods and linear probes achieve
relatively good performance as they distribute the attention
between prompts and features across the temporal domain.
However, as we increase the IoU threshold, we can see that
our PLOT-TAL method becomes more effective, demon-
strating the network’s higher discriminative ability.

4.2.2. EPIC-KITCHENS-100

In Tab 2, we show results on the EPIC Kitchens verb and
noun partitions, showing a slight improvement over single
prompt methods for the noun classes (T 1.19) but achieve

~
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Figure 3. mAP over various IOU thresholds and number of train-
ing samples on the THUMOS-14 dataset. Additional prompts
demonstrate improved performance, especially at high IoU thresh-
olds indicating improved discriminative ability.

a more significant performance boost for the verb classes
(1 2.96).

This demonstrates the effectiveness of the additional
prompts in distinguishing between complex temporal fea-
tures. However, the performance improvement is less pro-
nounced for the noun partition. This suggests that nouns,
which are generally static and visually distinct, are inher-
ently easier to classify with a single prompt. As a result,
they do not derive as much benefit from the added con-
text provided by multiple prompts. Nouns typically rep-
resent objects with consistent visual appearances, reduc-
ing the need for additional context to disambiguate them.
Therefore, the application of optimal transport, which ex-
cels in aligning distributions of more dynamic and context-
dependent features (such as verbs), does not yield a substan-
tial advantage in this case.

In Tab 3, we compare with other SOTA methods for
few-shot temporal action localisation, which utilise meta-
learning and perform few-shot localisation at a 5-shot, 5-
way setting, whereas our results are from the 5-shot, 20-
way configuration. Not only is the 5-shot, 20-way few-shot
setting more challenging, but PLOT-TAL also benefits from
being trained end-to-end without the requirement for pre-
training and episodic adaptive contrastive learning as in cur-
rent meta-learning approaches.

4.3. Qualitative Results

In Fig 4, we show the normalised transport cost for each
frame and N embedding for the class label ‘Cricket Shot’.
This figure shows how each N prompts diverge and focuses
on different elements and views within the videos. For ex-
ample, we can see that N; or Prompt 1 learns global in-
formation across all frames. This shows how we may dis-
tribute alignment across all frames in a single prompt frame-
work and lose discriminative ability since it learns global
information over the whole video. In the figure, we can



Table 1. Performance comparison of our proposed method PLOT-TAL on the THUMOS-14 dataset against baselines.

Method mAP@0.3 mAP@0.4 mAP@0.5 mAP@0.6 mAP@0.7 ‘ Avg (mAP)
Baseline I (avg) 37.3 32.93 26.88 18.17 8.83 24.82
Baseline II (Ip) 51.98 46.5 36.79 25.62 14.66 35.11
CoOP 48.73 43.67 36.64 27.24 16.97 34.65
PLOT-TAL CLS 53.46 48.93 38.2 30.2 18.8 38.24
PLOT-TAL Verbose 56.42 50.54 42.48 32.35 21.17 40.59

Table 2. Few-shot TAL performance (mAP@IoU) on the EPIC-Kitchens-100 Noun and Verb partitions.

Our method shows the most

significant gains on the more dynamic verb classes, supporting our thesis that it excels at modeling complex temporal structure.

EPIC-Kitchens Noun

EPIC-Kitchens Verb

Method @0.1 @02 @03 @04 @05 Avg. @01 @02 @03 @04 @0.5 Avg

Ours (Avg.) 14.3 13.5 13.1 10.3 9.3 121 212 19.9 180 152 119 173

Linear Probe (LP) 180 154 14.1 12.2 9.5 139 225 213 192 171 133 187

CoOp [35] 16.1 150 138 11.8 9.5 133 185 17.6 16.3 146 125 159

PLOT-TAL (Ours) 179 167 151 127 100 145 218 209 194 176 146 189
Table 3. Few-shot TAL performance on THUMOS’14. Our

end-to-end (E2E) method is compared against prior meta-learning
(ML) work. Note that the evaluation settings are different, making
a direct comparison of scores challenging; our 20-way task is sig-
nificantly harder than the 5-way task.

Method Approach  Avg. mAP (%)

Meta-Learning Approaches (5-shot, 5-way)

Common Action Loc. [30] ML 22.8
MUPPET [17] ML + PL 24.9
Multi-Level Align. [10] ML 31.8
Q. A. Transformer [16] ML 32.7
End-to-End Prompt Learning (5-shot, 20-way)
CoOp [35] E2E + PL 34.65
PLOT-TAL (Ours) E2E + PL 38.24
PLOT-TAL (Verbose) (Ours) E2E + PL 40.59

note that Prompt 4 appears to learn background informa-
tion and is more closely aligned to frames where we can see
the stadium stands. Prompts 2 and 3, however, indicate a
closer alignment with objects related to the class of ‘cricket
shot,” including when the cricket strip is in the shot and
there are people on the field. The plot clearly reveals that
each prompt, when considered in isolation, demonstrates
varying degrees of alignment with different sections of the
video. This suggests that each prompt is capturing unique
and complementary aspects of the video content, allowing
for a more nuanced understanding of the temporal dynam-
ics.
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Figure 4. The normalised transport cost of each N prompt for
the class ‘Cricket Shot’ after training. Prompt one aligns with
global information, while the other prompts learn additional, com-
plementary views. In the transport cost algorithm, a lower value
indicates closer alignment.

4.4. Ablation Experiments

We perform several ablation experiments to evaluate each
component of the architecture. We experiment with the
number of learnable context tokens and prompts per class,
alternative feature alignment metrics, and the number of
feature pyramid network levels. We also experimented
with the types of RGB embeddings and several prompt-
engineering strategies.

4.4.1. Number of Learnable Prompts

In Tab 4, we perform an ablation experiment on the number
of learnable prompts N. The results show that the opti-
mum number of prompts is N = 6, while with an increased
number of prompts, e.g., N = 10, we can achieve better re-
sults in the more difficult IoU thresholds. This is due to the



Table 4. Ablation on the number of prompts (V) per class, evalu-
ated on THUMOS’ 14. We report mAP (%) at various IoU thresh-
olds. Performance is optimal at N = 6. Best result in each column
is in bold.

Prompts (N) mAP @ IoU Avg
0.3 0.4 0.5 0.6 0.7
4 55.88 50.21 43.06 3197 21.16 40.46
6 56.42 50.54 4248 3235 21.17 40.59
8 53.60 48.72 41.74 31.68 20.70 39.29
10 5496 50.27 4345 32,53 2144 40.53
12 5374 4825 41.02 30.57 20.06 38.73
14 5425 4894 4090 30.78 18.86 38.75
16 53.66 4828 41.04 30.84 20.15 38.79

increased temporal discriminative ability of the additional
prompts. As the N increases, performance degrades as the
model overfits due to the increased number of learnable pa-
rameters.

4.4.2. Number of Learnable Context Tokens

Each prompt also has several learnable context tokens as de-
scribed in [33] and [27]. These context tokens are randomly
initialised so that for the class ‘Basketball Dunk’ with 4 ctx
tokens, the full prompt will be

P ={X, X, X, X, Basketball Dunk} (5)

In Tab 6, we show the effect of varying the number of
learnable ctx tokens appended to each prompt. For each
N prompt, n., tokens are randomly initialised. The figure
shows that the optimum number of tokens is between 10
and 20. As per the existing literature [33, 34], we select 16
tokens for all methods unless otherwise stated and train and
test using the 5-shot, 20-way setup.

4.4.3. FPN Levels

In Tab 7, we show the effect of increasing or decreasing
the number of feature pyramid levels in the network. The
results show that six is the optimum number. Additional
FPN layers beyond six will tend to increase the number of
parameters for optimisation while not providing any addi-
tional benefit.

4.4.4. Feature Matching Strategy

To assess the efficacy of using Optimal Transport (OT) with
the Sinkhorn Algorithm to align video features with adap-
tive prompts, we conducted ablation experiments in which
OT was replaced with more straightforward distance met-
rics, precisely Euclidean distance and Hungarian distance.
Our goal was to determine the impact of these substitu-
tions on alignment performance and overall method effec-
tiveness.

4.4.5. Euclidean Distance

We replaced the OT metric with the Euclidean distance in
the first variant. Here, the alignment between the refined
video features {x},x5,...,x} and the adaptive prompts
Py, for each action category k was performed directly using
the Euclidean distance:

N
due(U, Vi) = > Y [Ix} — P

t=1 i=1

In this formulation, the cost matrix C}; is defined as the
squared Euclidean distance between video feature x; and
prompt embedding Py;:

Cii = |Ix — Pul|?

The alignment process involves directly computing the
sum of these distances without optimising a transport plan.

4.4.6. Hungarian Distance

In the second variant, we utilised the Hungarian algorithm
to find an optimal one-to-one matching between video fea-
tures and prompts, minimising the overall distance. The
cost matrix CYy; is defined similarly to the Euclidean dis-
tance case, but the Hungarian algorithm ensures a unique
assignment of each video feature to a prompt:

T N
driung (U, Vie) = min > > CiiTys (©6)

t=1 i=1

Here, II represents the set of all possible permutations
that allow a one-to-one matching between the sets of video
features and prompts. In Tab 8, we show that OT outper-
forms both methods.

The superior performance of OT can be attributed to sev-
eral key factors:

* Global Distribution Matching: OT aligns the entire dis-
tribution of video features with the prompts distribution,
considering the global structure and interdependencies
within the data. In contrast, Euclidean distance consid-
ers each pair independently, which can lead to suboptimal
alignments in the presence of complex feature distribu-
tions.

* Flexible Many-to-Many Matching: OT allows for a
many-to-many correspondence between video features
and prompts, providing more flexibility in the alignment
process. On the other hand, the Hungarian algorithm en-
forces a strict one-to-one matching, which may not cap-
ture the underlying relationships effectively, especially
when the number of video features and prompts differ sig-
nificantly.

* Entropic Regularization: The Sinkhorn algorithm in-
troduces entropic regularisation, promoting smoother and



Table 5. Ablation on visual feature embeddings, evaluated on THUMOS’ 14. Combining RGB and Optical Flow (Flow) features from I3D
yields the best performance, highlighting the importance of explicit motion cues for the TAL task.

Embedding Type mAP @ IoU Avg. mAP (%)
03 04 05 06 07

CLIP Vision (VIT-B-16) 4699 42.09 3426 2534 15.82 32.90

RGB (I3D) 43.13 3876 3171 23.15 1446 30.24

Optical Flow (I3D) 2603 2310 1954 1407 893 18.33

RGB + Flow (I3D) 5588 5021 43.06 3197 2116 40.46

Table 6. Ablation on the number of context tokens (ncx) per
prompt, evaluated on THUMOS’ 14. We report mAP (%) at var-
ious IoU thresholds. Performance is robust for values between
10-20, with the optimum at n¢x = 16.

mAP @ IoU

Netx Avg.
0.3 0.4 0.5 0.6 0.7

1 5225 4694 40.73 31.26 20.17 38.27
10 5494 4955 4249 31.14 20.08 39.64
16 5642 50.54 4248 3235 21.17 40.59
20 5339 4838 42.19 33.00 20.78 39.55
30 50.27 4554 3830 29.64 18.83 36.52
40 53,55 4730 4035 31.06 1946 38.34

Table 7. Ablation on the number of FPN levels, evaluated on THU-
MOS’ 14. Performance peaks with a 5-level pyramid.

FPN Levels mAP@0.5 Avg. mAP (%)
1 25.82 26.16
2 37.80 35.81
3 39.10 36.58
4 40.02 38.03
5 43.06 40.46
6 42.21 39.57
7 41.56 38.92

more stable solutions by avoiding challenging assign-
ments. This regularisation helps mitigate the impact of
noisy or outlier features, leading to more robust align-
ments.

4.4.7. Visual Feature Embeddings

To evaluate the effectiveness of adding motion information
via optical flow, we also performed additional experiments
using only the RGB embeddings, the optical flow embed-
dings, and RGB CLIP embeddings from a ViT-B-16 en-
coder, with results shown in Tab 5. The results show that
the CLIP embeddings perform better than the RGB from the
I3D network 1 2.67. This is because of the implicit align-
ment between the image and text encoder embeddings be-

Table 8. Ablation on the prompt alignment strategy, evaluated on
THUMOS’ 14. Our Optimal Transport (OT) approach significantly
outperforms both hard-assignment (Kuhn-Munkres) and simple
distance-based methods.

Alignment Method mAP@0.5 Avg. mAP (%)
Euclidean Distance 21.97 22.27
Kuhn-Munkres (Hungarian) 29.48 29.09
Optimal Transport (OT) 43.06 40.46

fore temporal convolution. However, when combined with
optical flow, the performance is improved by a large margin
of 1 7.56, demonstrating the enhanced classification ability
of the network when we add additional temporal informa-
tion.

5. Conclusion

This work addressed a fundamental limitation in prevail-
ing few-shot TAL methods: the inability of a single prompt
vector to effectively model the compositional and dynamic
nature of human actions from sparse data. We introduced
PLOT-TAL, a framework that departs from this paradigm
by modeling actions as a distribution of concepts, learned
via an ensemble of diverse prompts. Crucially, we demon-
strated that Optimal Transport serves not merely as a match-
ing algorithm, but as a powerful structural regularizer that
enforces prompt specialization, a key requirement for robust
generalization in low-data regimes.

Through extensive experiments on THUMOS’ 14, EPIC-
Kitchens, and ActivityNet 1.3, we established a new
state-of-the-art in few-shot TAL without resorting to com-
plex meta-learning schedules. Our analyses, particularly
the significant performance gains at high IoU thresholds
and the qualitative visualizations of prompt specialization,
confirm that our method’s success stems from learning
a more precise and compositional representation of ac-
tions. By moving beyond mean-based representations to-
wards structured, distributional alignments, our work opens
a promising new direction for developing more gener-
alizable and data-efficient models for video understand-
ing.
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