
Towards Rapid Elephant Flow Detection Using Time
Series Prediction for OTT Streaming

1st Anthony Orme
University of Surrey

Surrey, UK
a.orme@surrey.ac.uk

2nd Anthony Adeyemi-Ejeye
University of Surrey

Surrey, UK
femi.ae@surrey.ac.uk

3rd Andrew Gilbert
University of Surrey

Surrey, UK
a.gilbert@surrey.ac.uk

Abstract—Broadcast television traditionally employs a unidi-
rectional transmission path to deliver low latency, high-quality
media to viewers. To expand their viewing choices, audiences
now demand internet OTT (Over The Top) streamed media with
the same quality of experience they have become accustomed to
with traditional broadcasting. Media streaming over the internet
employs elephant flow characteristics and suffers long delays
due to the inherent and variable latency of TCP/IP. This paper
proposes to perform rapid elephant flow detection on IP networks
within 200ms using a data-driven temporal sequence prediction
model, reducing the existing detection time by half.

Early detection of media streams (elephant flows) as they enter
the network allows the controller in a software-defined network to
re-route the elephant flows so that the probability of congestion is
reduced and the latency-sensitive mice flows can be given priority.

We propose a two-stage machine learning method that encodes
the inherent and non-linear temporal data and volume charac-
teristics of the sequential network packets using an ensemble of
Long Short-Term Memory (LSTM) layers, followed by a Mixture
Density Network (MDN) to model uncertainty, thus determining
when an elephant flow (media stream) is being sent within 200ms
of the flow starting. We demonstrate that on two standard
datasets, we can rapidly identify elephant flows and signal them
to the controller within 200ms, improving the current count-min-
sketch method that requires more than 450ms of data to achieve
comparable results.

Index Terms—Video streaming, audio streaming, elephant flow,
mice flow, latency, TCP, LSTM, MDN, machine learning, SDN,
Temporal Sequence Prediction

I . I N T R O D U C T I O N

The internet has continued to grow and increase in popularity
and has helped drive the wide-scale adoption of handheld
devices such as mobile phones, laptop computers, and smart
televisions [1]. This increase, in turn, has led to significantly
greater consumption of live and prerecorded media over the
internet. Furthermore, the bi-directional nature of internet con-
nected devices has encouraged greater communal engagement
than traditionally found in the home viewing environment.

As Internet Protocol (IP) packets are distributed asyn-
chronously and randomly, there will be statistical peaks and
troughs in the number of packets available in the network at
any time. While IP packet loss is inherent within networks,
Transmission Control Protocol (TCP) provides reliable IP
packet delivery at the expense of increased latency as it relies
on resend strategies to account for lost packets [2].

Elephant flows (EFs) describe a particular type of TCP flow
that tends to be temporally long and has a high data rate,
and mice flows (MFs) are TCP flows that are short-lived and
time sensitive [3]. Heavy hitting EFs, and hence media flows,
within a network lead to the switch and router buffers filling
and possibly overflowing, resulting in congestion, especially

for time-sensitive mouse flows. Therefore, there is a need to
remove congestion on heavily subscribed network switch egress
ports to reduce the risk of holding back mice flows that are
short-lived and time-sensitive [3]. Datacentre measurements [4]
have shown that 80% of flows within a network are less than
a few milliseconds long and less than 10KB in size. While
the majority of traffic volume is represented in the top 10%
of large flows (EFs), any significant bandwidth traffic (e.g..
greater than 5Mbps) is often considered an EF [5].

Any competition between MFs and EFs for network re-
sources often results in MFs being starved of bandwidth,
leading to dropped packets and increased latency [6]. As
viewers continue exchanging social media messages through
MFs, these can be significantly and negatively influenced, thus
degrading the immersive viewing experience. Re-routing the
EFs to allow MFs greater bandwidth can potentially improve
the network throughput [7].

To resolve this, Liu [8] proposed a load-balancing mecha-
nism based on Software Defined Networks (SDNs) for routing
EFs. They then split and send EFs through multiple paths
based on the parameters of the states of the links. However,
EF detection must be determined early on; this is what our
work achieves. Rapid EF detection is essential to reducing
network congestion [9] and improving the immersive viewing
experience.

Several EF detection methods have been proposed previ-
ously [10]. However, they rely on short flow thresholds in the
switch, which can lead to high rates of false positives and
negatives. While others require periodic extraction of the flow
statistics [7] from the network switches to the SDN controller.
This may increase network traffic and cause congestion, thus
increasing latency. Protocols such as OpenFlow provide basic
metrics such as TCP flow rates and IP addresses. However, this
method does not work for EF detection using neural network-
based machine learning as the data available is too coarse and
lacks detail due to the switch measures adopted.

Therefore, we propose a more nuanced data driven approach
with the following key contributions:

• A proposed method of combining an ensemble LSTM [11]
and MDN [12] with low computational overhead that
achieves EF and MF detection within 200ms by capturing
long and short term temporal information and modelling
uncertainty thus detecting long term media flows to reduce
congestion and improve the viewer experience.

• Enabling ML approaches to model continuous flow data
by tokenising TCP data streams into 10ms bins.

• A comprehensive evaluation of the proposed ensemble
LSTM and MDN method on the open source and repre-

Fig. 1. SDN configuration using switch EF-Detector server and SDN controller.

sentative CAIDA [13] and MAWI [14] datasets.

I I . B A C K G R O U N D A N D M O T I VAT I O N

A. Elephant Flow related Work

EF definitions can be based on three methods of detection:
flow duration, flow data rate, and a combination of flow
duration and data rate. Estan [15] uses a method of detection
by calculating the flow data rate as a percentage of the overall
data rate during a given measure (1 second, 1 minute or 1
hour), and those exceeding a threshold of 0.1% are classified
as EFs. Lan [16] uses the datarate method and defines EFs as
flows with a data rate larger than xKb/sec. Papagiannaki [17]
uses a combined method of deriving a moving average of a
data rate during a given measure and determining the length
of the flow duration.

B. Detection Methods

Chao [18] uses a machine learning method called Stream
Mining based on the Hoeffding Tree [19], operating on a
continuous data stream using the labelled CAIDA dataset.
Hamdan [20] uses the count-min sketch method [21] to detect
mice flow candidates on the switch and then sends the data to a
controller to further validate an EF using a Very Fast Decision
Tree algorithm (VFDT) [22], the SDN is then signalled and
makes the relevant EF routing within the network to avoid
congestion. Chao and Hamdan label their EFs as for all TCP
flows greater than 5s and an average data rate greater than
5Mb/s.

To predict temporal sequences, RNNs and their variants,
including LSTMs [23] and Gated Recurrent Units [11] have
shown to learn and generalise the properties of temporal
data sequences successfully. Graves [24] was able to predict
isolated handwriting sequences, and Alahi [25] was also able
to predict human trajectories of crowds by modelling each
human with an LSTM and jointly predicting the paths. More
recently, researchers turned their attention to the transformer
architecture [26] that has proven to excel in sequence prediction
in NLP tasks. However, the sparse nature of our CAIDA
and MAWI datasets has delivered sub-optimal results for our

transformer experiments. In computer networking, LSTMs are
used for various network management and optimisation tech-
niques, including network traffic modelling [27]. This enables
better load balancing, traffic engineering, and performance
diagnostics.

C. Fixed Time Length Detection

Key to our method is that the IP packets are aggregated
and tokenized into 10ms time bins so that EF detection can
achieved within a fixed time period of 200ms, regardless of the
length of the overall flows. This differs from other methods
such as those provided by [28] [29] and [30] where time series
analysis is achieved using individual packets. Methods such as
[28] highlight that they can achieve high levels of EF detection
using 15 consecutive IP packets, consequently, it could take
many seconds to detect and EF as 15 IP packets could occur
in a significant length of time. Our method detects EFs within
200ms regardless of the length of the MF and EFs.

D. Modelling Uncertainty

One of the challenges neural networks exhibit is that their
practical implementations continue to be black-box designs
with little regard for modelling interpretability and output
stochasiticity [31]. To overcome this, Swamy [31] proposed
a method to improve interpretability and estimation of uncer-
tainty based on a framework using mixture density networks.
To enhance network traffic classification and verification due to
the number of internet applications, Alizadeh uses a variation
of MDNs called Gaussian Mixture Models [32].

I I I . D E S I G N M E T H O D

We present our EF detection by comparing our results to
the count-min sketch methods provided by Hamdan [20] and
determine that the ensemble-LSTM-MDN detects EFs with
the same accuracy as Hamdan but in half the time. This is
important for SDN networks as the controller’s response time
is significantly improved, leading to much faster re-routing
of long and heavy-hitting EFs, thus reducing MF latency. By
signalling EFs only to the SDN controller using a localised

dedicated out-of-band server, we significantly reduce the net-
work traffic to the SDN controller, thus further optimising
network latency, as demonstrated in Figure 1, which shows
a configuration of the ensemble-LSTM-MDN EF-Detector and
how it can be used in an optimised real-life application. The
following are required:

• Each switch sends TCP flows to EF-Detector using port
mirroring such as Cisco’s SPAN

• The EF-Detector receives TCP flows using a dedicated
NIC with TCP offload engine, such as the NVidia
ConnectX-7 Adapter to reduce network processing.

• The EF-Detector applies the windowing function [33] and
tokenises data into twenty bins of 10ms each, discretising
the time series data.

• The ensemble-LSTM-MDN EF-Detector sends a message
to the SDN controller when an EF has been detected.

• The SDN controller re-routes network traffic when it re-
ceives a message from EF-Detector to reduce congestion.

We propose a data-driven architecture: a neural network
of LSTM layers and an additional Mixture Density Network
(MDN) to identify patterns within processed TCP sequence
data to quickly and reliably classify EFs, as shown in Figure 1.
We tokenise the TCP data stream into a discrete set of bins;
this vector of quantised TCP data is used to train a temporal
prediction model via an ensemble of LSTM layers. An LSTM
can learn information about the temporal input data within a
defined sequence window. Using several LSTMs in parallel
allows for multiple window lengths of the tokenised TCP flow
data, capturing both short and long-term temporal information
about the TCP packets. The outputs of the LSTM ensemble
are connected to an MDN layer that adds further detail
by modelling uncertainty to the EF prediction by applying
Gaussian approximations to enable multimodal modelling of
the packet data. A classifier assesses the MDN outputs and
provides a classification into a two-hot vector consisting of an
EF or MF.

A. Input data Packet Tokenisation

The initial stage is to process the raw data into defined TCP
flows. The IP packets are extracted from the raw network data
and then decoded into TCP flows into a tuple with the following
defined specification - [ip src, ip dst, port src, port dst],
where ip src is the IP packet source address, ip dst is the IP
packet destination address, port src is the TCP port source
address, and port dst is the TCP port destination address.

Each flow is unique and has a start and end sequence.
To tokenise the data, the number of bytes in the IP packets
associated with each flow is aggregated into defined size bins
(x), where x = 10ms for this work. Each bin contains the
accumulated data for the TCP flow identified in the associated
record. Each of these bins provides the average data rate
for the flow at 10ms intervals. Therefore for a given TCP
flow, X , with a the total sequence length of n, the TCP flow
consists of the n bins, X = {x0, x1, x2, ..., xn−1}. Then
the full extracted set of TCP flows X can be represented
by X = {X(0),X(1), ...,X(t−1)}. However, applying the
windowing technique requires only the first 20 bins, so n is
restricted to a value of 20, and t is limited to the number of
TCP flows received within the 1s window. This tokenisation
of the raw data into discrete bins enables temporal sequence
prediction via multiple LSTM layers to learn the relationship

between the EFs and MFs, and it keeps memory and resource
utilisation low in the EF-Detector server.

Tokenisation further improves EF detection as the temporal
element of the data packets is implied within each bin, and
the robustness of the measurement is maintained. The network
switch resources needed to mirror the TCP flows to the SPAN
port are small. The EF-Detector server, which is directly
connected to the network switch, efficiently collates the TCP
streams and tokenises the data for processing by its ensemble-
LSTM-MDN inference software; it then communicates an EF
detection to the SDN controller with the EFs timestamps, IP
addresses, and TCP port numbers. Thus allowing the SDN
controller to re-route the EF to reduce latency for the time-
sensitive MFs. Furthermore, the network traffic to communicate
the aggregated data bins to the SDN controller is negated.

It is possible to treat packets with their timestamps as
individual data points and present these to the model; however,
we concluded that aggregating the TCP/IP packets into time
bins could provide a more generalised solution. Our solution,
a data-driven temporal time prediction model with uncertainty
estimation, has led to the adoption of time bins. Aggregating
the packets into 10ms time bins maintains the accuracy of the
data packet size information, keeps an element of the timing
information, and keeps network traffic low between the EF-
Detector server and the SDN controller.

B. LSTM and MDN Layers

Given the temporal nature of TCP packet information
represented in the tokenised data, it is desirable to learn and
identify the rich temporal patterns between flows to classify
EFs and MFs. Long Short-Term Memory (LSTM) layers [11]
have provided excellent performance in exploiting longer-term
temporal correlations compared to standard recurrent neural
networks on many tasks. LSTM layers can store and access
information over long periods but mitigate the vanishing and
exploding gradient problem common in RNNs through a
specialised gating mechanism.

The LSTM is particularly well suited for determining pat-
terns in sequences. However, the size of the window of
sequences it can sample is fixed, leading it to potentially
learning patterns associated with a specific sequence length.
Therefore, to expand and model over a range of window
sequence sizes, inspired by [34], we propose to use multiple
LSTMs with different sequence sizes and combine their outputs
to create both a short and long-term temporal model. The
concatenated LSTM layer consisting of 256 nodes connects
directly to the MDN input, thus providing it with a rich
source of feature embedding in the latent space. While the
LSTMs find temporally dependent long and short-term patterns
within the network data stream, the MDN models uncertainty
to improve the detections provided by the ensemble-LSTM.
Neural networks often contain two or more distinct values,
i.e., for some x values, f(x) has two or more distinct modes;
therefore, f(x) is not a function but is a multi-valued relation.
In such a circumstance, the neural network classification will
provide a value that is an average conditioned on the target
data [12] and consequently lacks accuracy. One method of
solving this challenge is to compute the conditional probability
density, which is the MDN’s approach.

Given the time bin inputs {i0, i1, ...in}, where n is the
number of time bins per LSTM, each LSTM produces outputs

xt as follows where ht is the hidden states of the LSTM units:

xt, ht = LSTM(it, ht−1) (1)

The ensemble provides a concatenation of each LSTM such
that Xt = {x0

t , x
1
t , x

2
t , x

3
t} for the 50, 100, 150, and 200ms

LSTMs respectively at time t, which forms the input vector
to the MDN neural network.X is fed through the neural
network to form the parametised vector Z which then consists
of {µ,σ,α}, where µ = {µ0, µ1, ...µM} are the averages,
σ = {σ0, σ1, ...σM} are the variances, α = {α0, α1, ...αM}
are the coefficient weights, and M is the number of MDN
components. Given the set of modelled features Xt, we model
the conditional probability of the EF detection, yt, at time t:

p(yt|Xt) =

M∑
i=1

αi(Xt)ϕ(yt|Xt) (2)

Where M is the number of mixture components, α(Xt) is
the mixture coefficient, which represents the probability of the
EF at yt, and ϕ(yt|Xt) is the conditional density of the EF at
yt. Thus, Equation 2 demonstrates that the probability density
of the EF is represented as a linear combination of the mixture
components. To achieve classification, then the most likely
value for yt is given by the maximum of the conditional density
p(yt|Xt) [12]. As the density function is represented as a
mixture model, the location of its global maximum is a problem
in non-linear optimisation. However, the techniques for this are
computationally costly, so an optimised method is provided
in Equation 3 where it is assumed that the density functions
are not too strongly overlapping [12], and this approximation
provides the centre of the highest component for the most likely
value of yt. This corresponds to the centre µm, representing
the most likely approximation. If this value is greater than
50%, then yt is classified as an EF; otherwise, yt is classified
as an MF.

yt = max
m

{αmXt

σmXt

}
(3)

Where m ∈ M is the number of MDN components.

C. Training and Inference

Training for the CAIDA dataset took approximately half an
hour, and for the MAWI dataset, it took five hours. Once the
training was complete, inference for the complete ensemble-
LSTM-MDN model occurred within 1ms to provide an EF
or MF classification using a single NVidia RTX5000 GPU
operating in a 2x Intel Xeon Silver 4210R 2.4G server.

I V. E X P E R I M E N T S

We evaluate our approach using the standard 6hr CAIDA
[13] and 24hr MAWI dataset [14]. These were chosen as they
contain EFs representative of heavy hitting media flows found
in OTT streaming. To label the datasets, an EF is defined
following the method of Hamdan [20]; EFs have a data rate
greater than 5Mbps and are longer than 5s. Each dataset
consists of more MFs than EFs, with the MFs, on average,
being significantly lower in data rate and time than the EFs.
Using the data with these proportions would cause a significant
skew and bias in learning and overfit. Therefore, each dataset
was randomly subsampled so that the ratio of MFs to EFs is
50:50. Each dataset was further partitioned to provide a train:
test ratio of 90:10. CAIDA consisted of 6,343 training records

and 704 test records, and MAWI consisted of 42,804 training
records and 4,756 test records.

A. Baseline Methods

Four methods were chosen to baseline our proposed EF
detection model against: Gudibanda [35], Mohammed [36],
Chao [18] and Hamdan [20]. Gudibanda [35] uses the Gaussian
Naive Bayes method to assume conditional independence
between every pair of features for the class. This method
assumes all the features are independent, which may not be
the case due to the cyclical nature of TCP flows. Mohammed
[36] reviews and proposes Linear Regression, which assumes
the detection fits a constant slope. Although this model is
predominantly used to predict continuous variables, it was
used in these tests to determine if the relationship between the
features and the detection was easily predictable. Chao [18]
uses a Hoeffding Tree [19], which assumes that the distribution
does not change significantly over time. And Hamdan [20]
uses the Count-Min-Sketch to determine the frequency of the
table of events. We use several standard metrics to evaluate
the performance of our proposed approach, precision, recall,
f-measure and MCC [37].

B. Results

Table I and Table II provide a summary of the key measures
for each method and a comparison to our ensemble-LSTM-
MDN proposal. Our method continually demonstrates higher
metrics and lower errors than the other methods, especially
considering the time it takes to detect the EF. For the CAIDA
dataset in Table II, Gudibanda [35] and Mohammed [36]
achieve an f-measure of 0.89 after 350ms, and Hamdan [20]
achieves an f-measure of 0.80 after 500ms. However, for the
MAWI dataset in Table I, Gudibanda [35] only achieves an
f-measure of 0.72, Mohammed [36] achieves an f-measure of
0.83 and Hamdan [20] achieves an f-measure of 0.91 after
400ms, compared to our results using the ensemble-LSTM-
MDN of 0.91 after 200ms. The MAWI dataset in Table I
achieves better results due to the significant increase in number
of training records available compared to the CAIDA dataset.
Due to the limited number of training records available in the
CAIDA dataset, the ensemble-LSTM-MDN will be overfitting,
which implies bias in the dataset. Hence, the performance is not
as good as the MAWI dataset. Using larger datasets allows the
model to be more general and have less bias without overfitting
the data (i.e. without leading to increased variance) [12]. Both
Chao [18] and Hamdan [20] perform better as the number
of 10ms bins that are presented increases to 500ms for the
decision tree and count-min-sketch models. However, this is
to be expected as their accuracy increases with the amount of
data presented to them.

To motivate the use of an ensemble of LSTMs, Table III
shows the performance of the metrics for a single LSTM
layer for the four sequence window sizes used by the ensem-
ble architecture, and then for increasing numbers of parallel
LSTMs. The comparison shows how the metrics steadily
improve as more LSTMs are added to the ensemble. A single
LSTM cannot capture enough information to compete with the
multiple LSTM models, with even the dual LSTM improving
EF detection metrics. Tests with five LSTMs were conducted
but did not improve on the results in Table III due to over-
fitting. To motivate the inclusion of the MDN network, Table IV

Time Bin
Length

Naive
Bayes [35]

Linear Regres-
sion [36]

Hoeffding
Tree [18]

Count-Min
Sketch [20]

ensemble-4
LSTM-MDN

MCC FMeas MCC FMeas MCC FMeas MCC FMeas MCC FMeas

100ms 0.38 0.72 0.52 0.79 0.47 0.76 0.69 0.78 0.74 0.82
200ms 0.38 0.72 0.54 0.82 0.53 0.75 0.76 0.84 0.84 0.91
300ms 0.38 0.72 0.61 0.82 0.67 0.80 0.80 0.88 0.87 0.92
400ms 0.34 0.71 0.58 0.81 0.85 0.85 0.84 0.91 0.88 0.92
500ms 0.34 0.71 0.34 0.71 0.99 0.99 0.85 0.91 0.87 0.92

TABLE I
M AW I 2 0 2 2 D ATA S E T C O M PA R I S O N T O O T H E R M E T H O D S . T H E H I G H L I G H T S H O W S T H E 2 0 0 M S D E T E C T I O N TA R G E T T I M E .

Time Bin
Length

Naive
Bayes [35]

Linear Regres-
sion [36]

Hoeffding
Tree [18]

Count-Min
Sketch [20]

ensemble-4
LSTM-MDN

MCC FMeas MCC FMeas MCC FMeas MCC FMeas MCC FMeas

100ms 0.33 0.75 0.33 0.75 0.27 0.64 0.00 0.00 0.70 0.72
200ms 0.66 0.86 0.67 0.86 0.25 0.23 0.18 0.11 0.78 0.86
300ms 0.70 0.87 0.72 0.89 0.66 0.86 0.44 0.50 0.79 0.87
400ms 0.74 0.89 0.74 0.89 0.80 0.90 0.61 0.70 0.79 0.87
500ms 0.74 0.89 0.74 0.89 0.63 0.75 0.70 0.80 0.88 0.81

TABLE II
C A I DA 2 0 1 9 D ATA S E T C O M PA R I S O N T O O T H E R M E T H O D S . T H E H I G H L I G H T S H O W S T H E 2 0 0 M S D E T E C T I O N TA R G E T T I M E .

Architecture Seq Length MCC↑ f-Measure↑

Single LSTM 10 0.51 0.59
Single LSTM 20 0.59 0.65
Single LSTM 30 0.63 0.69
Dual LSTM 5, 10 0.51 0.59
Dual LSTM 25, 30 0.66 0.70
Triple LSTM 5, 10, 15 0.55 0.61
Triple LSTM 15, 20, 30 0.68 0.72

Proposed LSTM-4 5, 10, 15, 20 0.68 0.72
TABLE III

P E R F O R M A N C E O F P R O P O S E D M E T H O D F O R I N C R E A S I N G
N U M B E R O F L S T M S (W I T H O U T M D N) F O R C A I DA D ATA S E T

compares EF detection by comparing the ensemble-LSTM
with the ensemble-LSTM-MDN. The results show a consistent
improvement when using the MDN layer.

V. C O N C L U S I O N A N D F U T U R E W O R K

The results have demonstrated that the proposed data-driven
ensemble-LSTM-MDN model provides consistently better
short-term EF detection results than the other methods con-
sidered. The speed with which detection can be achieved will
reduce the possibility of latency, allowing network operators
to improve load balancing and lower latency, especially for
time-sensitive events.

Future work will explore reducing the token time length
to lower than 10ms to improve the metrics and, hence, EF
detection speed. This should increase the number of tokens
available to the ensemble-LSTM-MDN model, enhancing the
detection accuracy and, thus, improving the metrics. However,

Time Bin
Length

ensemble-4
LSTM

ensemble-4
LSTM-MDN

MCC FMeas MCC FMeas

100ms 0.72 0.76 0.74 0.82
200ms 0.79 0.85 0.84 0.91
300ms 0.80 0.86 0.87 0.92
400ms 0.81 0.87 0.88 0.92
500ms 0.79 0.86 0.87 0.91

TABLE IV
M AW I D ATA S E T C O M PA R I N G E N S E M B L E - L S T M T O

E N S E M B L E - L S T M - M AW I . T H E H I G H L I G H T S H O W S T H E 2 0 0 M S
D E T E C T I O N TA R G E T T I M E .

there is the potential for over-fitting. The four ensemble-LSTM-
MDN model achieved the required result by predicting EFs
with an f-measure metric of 0.91 within 200ms. The MDN
layer is of particular interest and requires further investigation
as it models uncertainty in the dataset. This will improve
detection as the input IP packets continuously vary in the time
domain.

R E F E R E N C E S

[1] M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and X.
Amatriain, “Watching television over an IP network,”
Proceedings of the ACM SIGCOMM Internet Measure-
ment Conference, IMC, 2008.

[2] W. Eddy, Transmission Control Protocol (TCP), RFC
9293, 2022.

[3] T. Mori, M. Uchida, R. Kawahara, J. Pan, and S. Goto,
“Identifying elephant flows through periodically sampled

packets,” in Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement, 2004.

[4] T. Benson, A. Akella, and D. A. Maltz, “Network
traffic characteristics of data centers in the wild,” in
Proceedings of the 10th ACM SIGCOMM conference
on Internet measurement, 2010.

[5] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang,
A. Vahdat, et al., “Hedera: Dynamic flow scheduling for
data center networks.,” in Nsdi, San Jose, USA, 2010.

[6] W. Wang, Y. Sun, K. Salamatian, and Z. Li, “Adaptive
path isolation for elephant and mice flows by exploiting
path diversity in datacenters,” IEEE Transactions on
Network and Service Management, 2016.

[7] C. K.Lou Y.Yang, “An elephant flow detection method
based on machine learning,” in Smart Computing and
Communication, 7th International Conference Smart
Computing and Communication, 2019.

[8] J. Liu, J. Li, G. Shou, Y. Hu, Z. Guo, and W. Dai,
“Sdn based load balancing mechanism for elephant flow
in data center networks,” in 2014 International Sympo-
sium on Wireless Personal Multimedia Communications
(WPMC), IEEE, 2014.

[9] L. TIANYu, B.-s. LAIYing-xu, et al., “Tpefd: An sdn-
based efficient elephant flow detection method,” Chinse
Journal of Network Information Security, 2017.

[10] F. Tang, H. Zhang, L. T. Yang, and L. Chen, “Elephant
flow detection and load-balanced routing with efficient
sampling and classification,” IEEE Transactions on
Cloud Computing, 2019.

[11] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural computation, 1997.

[12] C. M. Bishop, Mixture density networks, 1994.
[13] Caida anonymized internet traces 2019, https://catalog.

caida.org/dataset/passive 2019 pcap.
[14] Mawi working group traffic archive, 2022.
[15] C. Estan and G. Varghese, “New directions in traffic mea-

surement and accounting,” in Proceedings of the 2002
conference on Applications, technologies, architectures,
and protocols for computer communications, 2002.

[16] K. Lan and J. Heidemann, “On the correlation of
internet flow characteristics,” Technical Report ISI-TR-
574, USC/ISI, Tech. Rep., 2003.

[17] K. Papagiannaki, N. Taft, S. Bhattacharyya, P. Thiran,
K. Salamatian, and C. Diot, “A pragmatic definition of
elephants in internet backbone traffic,” in Proceedings
of the 2nd ACM SIGCOMM Workshop on Internet
measurment, 2002.

[18] S.-C. Chao, K. C.-J. Lin, and M.-S. Chen, “Flow classi-
fication for software-defined data centers using stream
mining,” IEEE Transactions on Services Computing,
2016.

[19] A. Kumar, P. Kaur, and P. Sharma, “A survey on hoeffd-
ing tree stream data classification algorithms,” CPUH-
Res. J, 2015.

[20] M. Hamdan, B. Mohammed, U. Humayun, et al., “Flow-
aware elephant flow detection for software-defined net-
works,” IEEE Access, 2020.

[21] G. Cormode and S. Muthukrishnan, “An improved
data stream summary: The count-min sketch and its
applications,” Journal of Algorithms, 2005.

[22] P. Domingos and G. Hulten, “Mining high-speed data
streams,” in Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery and
data mining, 2000.

[23] Z. Ferdoush, B. N. Mahmud, A. Chakrabarty, and J.
Uddin, “A short-term hybrid forecasting model for time
series electrical-load data,” International Journal of
Electrical and Computer Engineering, 2021.

[24] A. Graves, “Generating sequences with recurrent neural
networks,” arXiv preprint arXiv:1308.0850, 2013.

[25] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-
Fei, and S. Savarese, “Social lstm: Human trajectory pre-
diction in crowded spaces,” in Proceedings of the IEEE
conference on computer vision and pattern recognition,
2016.

[26] A. M. Braşoveanu and R. Andonie, “Visualizing trans-
formers for nlp: A brief survey,” in 2020 24th Interna-
tional Conference Information Visualisation (IV), IEEE,
2020.

[27] A. Lazaris and V. K. Prasanna, “An lstm framework for
modeling network traffic,” in 2019 IFIP/IEEE Sympo-
sium on Integrated Network and Service Management
(IM), 2019.

[28] G. Wassie Geremew, J. Ding, et al., “Elephant flows
detection using deep neural network, convolutional neu-
ral network, long short-term memory, and autoencoder,”
Journal of Computer Networks and Communications,
2023.

[29] P. Jurkiewicz, “Flow-models 2.0: Elephant flows mod-
eling and detection with machine learning,” SoftwareX,
2023.

[30] J. d. M. Bezerra, A. J. Pinheiro, C. P. de Souza, and D. R.
Campelo, “Performance evaluation of elephant flow
predictors in data center networking,” Future Generation
Computer Systems, 2020.

[31] G. Swamy, A. Das, and S. Niranjan, “Causal inter-
pretability and uncertainty estimation in mixture density
networks*,” in ICANN 2023, 2023.

[32] H. Alizadeh, H. Vranken, A. Zúquete, and A. Miri,
“Timely classification and verification of network traffic
using gaussian mixture models,” IEEE Access, 2020.

[33] R. E. Sibai, Y. Chabchoub, J. Demerjian, Z. Kazi-Aoul,
and K. Barbar, “Sampling algorithms in data stream
environments,” in 2016 International Conference on
Digital Economy (ICDEc), 2016.

[34] J. Y. Choi and B. Lee, “Combining lstm network en-
semble via adaptive weighting for improved time series
forecasting,” Mathematical problems in engineering,
2018.

[35] A. Gudibanda, J. Ros-Giralt, A. Commike, and R.
Lethin, “Fast detection of elephant flows with dirichlet-
categorical inference,” in 2018 IEEE/ACM Innovating
the Network for Data-Intensive Science (INDIS), IEEE,
2018.

[36] A. R. Mohammed, S. A. Mohammed, and S. Shirmo-
hammadi, “Machine learning and deep learning based
traffic classification and prediction in software defined
networking,” in 2019 IEEE International Symposium on
Measurements & Networking (M&N), IEEE, 2019.

[37] D. Chicco and G. Jurman, “The advantages of the
matthews correlation coefficient (mcc) over f1 score

and accuracy in binary classification evaluation,” BMC
genomics, 2020.

