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ABSTRACT

Movie genre classification is an active research area in ma-
chine learning; however, the content of movies can vary widely
within a single genre label. We expand these ‘coarse’ genre
labels by identifying ‘fine-grained’ contextual relationships
within the multi-modal content of videos. By leveraging pre-
trained ‘expert’ networks, we learn the influence of different
combinations of modes for multi-label genre classification.
Then, we continue to fine-tune this ‘coarse’ genre classifica-
tion network self-supervised to sub-divide the genres based on
the multi-modal content of the videos. Our approach is demon-
strated on a new multi-modal 37,866,450 frame, 8,800 movie
trailer dataset, MMX-Trailer-20, which includes pre-computed
audio, location, motion, and image embeddings.

1. INTRODUCTION

Genre labels are a useful device for concisely describing a
movie’s narrative, theme, and style. However, within a sin-
gle genre, we can find a huge range of audio-visual diversity.
Furthermore, in film theory, it has been shown that the se-
mantics of specific genres has shifted throughout film history
[23]]. With this in mind, we propose that genre labels should
be considered a weak labelling methodology and present a
self-supervised clustering solution for identifying semantically
similar information between videos that share similar genre
labels.

To do so, we exploit expert knowledge in the form of se-
mantic embedding ‘experts’, including scene understanding,
image content analysis, motion, and audio. First, using col-
laborative gating as outlined in [17,[20]], we train an encoder
network for the task of multi-label genre classification to act
as a weak proxy. Then inspired by [18} 23} 2], we attach a
projection head and continue to train the model self-supervised
to break apart genre clusters into sub-genres by fine-tuning the
encoder network using a contrastive loss.

As in other works [24, 114, 30, 28, 26|, we use movie trail-
ers as they offer a condensed representation of a movies theme
and content. First, we demonstrate the effectiveness of a multi-
modal, collaboratively gated network for multi-label coarse
genre classification of up to 20 genres. Then we implement
fine-grained semantic clustering of genres via self-supervised
learning for retrieval and exploration, demonstrating the results
in a new large 37M frame multi-label genre dataset with pre-
processed expert embeddings. The reader can find a detailed

overview of the dataset and a description of the embedding
pre-processing in the supplementary material.

Earlier techniques in this field pertain to extracting low-
level audiovisual descriptors. Huang(H.Y.) et al. [13]] used
two features - scene transitions and lighting. In contrast, Jain
& Jadon [16] applied a simple neural network with low-level
image and audio features. Huang(Y.F.) & Wang [14]] used the
SAHS (Self Adaptive Harmony Search) algorithm in select-
ing features for different movie genres learnt using a Support
Vector Machine with good results. Zhou et al. [31]] predicted
up to four genres with a BOVW clustering technique. Musical
scores have also shown to offer a helpful mode for classifica-
tion as in the work of Austin et al. [4] who predicted genre with
spectral analysis using SVMs. More recent work has utilised
deep learning and convolutional neural networks for genre
classification. Wehrmann & Barros [28,129] used convolutions
to learn the spatial as well as temporal characteristic-based re-
lationships of the entire movie trailer, studying both audio and
video features. Shambharkar et al. [25]] introduced a new video
feature and three new audio features that proved useful in clas-
sifying genre, combining a CNN with audio features to provide
promising results. While [26], employed 3D ConvNets to cap-
ture both the spatial and temporal information present in the
trailer. The ‘interestingness’ of movies has also been predicted
by audiovisual features [5]. Gating strategies for combining
expert networks have been explored in [15} 27} 10, 19, [17].

2. METHODOLOGY

Fig.[I|presents an overview of our approach. First, using four
multi-modal ‘experts’, we extract audio and visual features
from the input video. Then, to enable genre classification,
inspired by [17, 20], a collaborative gating model learns to em-
phasise or downplay combinations of these features. Finally,
we train the network to develop fine-grained semantic clus-
ters through self-supervised training, maximising the cosine
similarity between sub-sequences within the trailers embed-
ding vectors obtained from the same movie trailer (positive
examples) while pushing negative sequence pairs apart.

Given a set of videos v, each video is made up of a collection
of sequences, s, so v = {s!,s?,...s™}, where there are m
sequences in a video and each sequence is formed of n clips,
giving s = {c!,?,...c"}. The aim of this work is to create
a function ® that can map a clip ¢ from a video sequence s,
where ¢ € s € v to ajoint feature space z; that respects the dif-
ference between clips. To construct our function ®, we rely on
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Fig. 1: An overview of the approach. Image and audio fea-
tures from movie trailers are extracted and their influence is
learnt via a collaborative weighting to classify broad genres
such as Action, Adventure and Sci-Fi. A self-supervised net-
work then compares these embeddings to generate contextually
appropriate sub-genres.

several pre-trained single modality experts, {1, U2 . WE},
with F experts and W€ is the e’th expert. These operate on
the video or audio data and project the clip to an individual
variable length embedding. Given that the embeddings ¥ are
variable lengths, we aggregate the embeddings along their tem-
poral component to form a standard vector size. You could use
any temporal aggregation here, but we use average pooling
for the video-based features. While for audio, we implement
NetVlad [3]], inspired by the vector of locally aggregated de-
scriptors, commonly used in image retrieval. We apply linear
projections to transform these task-specific embeddings to a
standard dimensionality to enable their combination in the
following collaborative gating phase.

Collaborative Gating Unit: The Collaborative Gating Unit
first proposed in [20] aims to achieve robustness to noise
in the features through two mechanisms: (i) the use of in-
formation from a wide range of modalities; (ii) a module
that aims to combine these modalities in a manner that is
robust to noise. To learn the optimum combination of the
expert embeddings we define a single attention vector for
the e’th expert, then modulate the expert responses with the
original data. To create the e’th expert’s projection 7, the
attention vector of an expert projection will consider the poten-
tial relationships between all pairs associated with this expert,
T¢(v) = h(!7° g(¥i(v), U/ (v))). This creates the projec-
tion between expert e and f, where g(.) is used to infer the
pairwise task relationships while h(.) maps the sum of all

pairwise relationships into a single attention vector 7°¢, and
v is the set of sequences. Both h(.) and g(.) are defined as
multi-layer perceptrons (MLPs). To modulate the result, we
take the attention vectors 7' = {T(v), T?(v), ..., T¢(v)} and
perform element wise multiplication with the initial expert
embedding vector which results in a suppressed or amplified
version of the original expert embedding. Each expert em-
bedding is then passed through a Gated Embedding Module
(GEM) [21] before being concatenated together into a single
fixed length vector for the clip. We capture 9 clip embeddings
before concatenating and passing through an MLP to obtain a
sequence embedding. These sequence representations are then
concatenated together before being passed through a bottle-
neck layer which learns a compact embedding for the whole
trailer. We can train the trailer embedding obtained from the
collaborative gating unit in conjunction with genre labels to
enable classification. First, the sequence embeddings z are
summed over a trailer and then projected via an MLP k(.) to
produce a logits embedding. We then minimise a Binary Cross
Entropy Logits Loss until convergence to make coarse genre
predictions.

Fine Grained Semantic Genre Clustering: As discussed in
the introduction, discreet genre labels are restrictive and only
offer a broad representation of a video’s content. We aim to
find finer-grained semantic content by identifying similarities
in the sound, locations, objects, and motion within the videos.
To achieve this, we extend the pre-trained coarse genre clas-
sification model with a self-supervised contrastive learning
strategy using a normalised temperature-scaled cross-entropy
loss [8], Lar7x. In [8], image augmentations are used as
comparative features to fine-tune the embedding layer of a
classification network to encourage more significant cosine
similarity between augmentations obtained from the same im-
age. We extend this method to video, splitting the video into
two equal sequence lengths and then using these embeddings
as the representation pairs z. When splitting the video, we
sample sequences randomly from the trailer to obtain a good
distribution of content.

log exp(sim(m(x;), m(x,)/7)
Eiflj%mexp(sim(m(xi),m<wn>>/£)

Here z;, =, and x,, are the feature representations and
m(.) represents a projection head encoder formed from MLPs,
7 > 0 is a temperature parameter set at 0.5 and sim is the
cosine similarity metric. x; and x,, are two embedding vectors
obtained from the same video as described above, while z,,
is an embedding vector from another video. Here, the Lycg
loss will enforce x; closer in cosine similarity to x,, but further
from ,,. This process is illustrated in the overview Fig. [T]

LnTx(x) = —

After training, the MLP projection head (m(.)) is removed,
and we use the bottleneck layer of the collaborative gating
model as a pre-trained embedding projection network to obtain
feature embeddings for clustering and retrieval.
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Fig. 2: MMX-Trailer-20 Dataset statistics.

3. RESULTS AND DISCUSSION

MMX-Trailer-20: Multi-Model eXperts Trailer Dataset:
There are several datasets upon which previous works test.
However, to capture the scale and variability of a dataset is
challenging, especially in terms of diversity of genre, size
of dataset, and year of distribution. Tbl. [I] shows the com-
parison in size and labelling between recent works in genre

classification. )
Table 1: Movie genre datasets

Video Number Label Num. Genre/

Dataset Source Trailers Frames Source Genres Trailer
Rasheed [24] Apple 101 - - 4 1
Huang [14] Apple 223 - IMDb 7 1
Zhou [30] IMDb+Apple 1239 45M IMDb 4 3
LMTD-9 [28] Apple 4000 12M IMDb 9 3
Moviescope [7] IMDb 5000 20M IMDb 13 3
MMX-Trailer-ZO\ Apple+YT 8803 37M IMDb 20 6

Most datasets are small with limited numbers of genre
labels, both in terms of variability and the number assigned
to a single trailer. Moviescope [7] is the closest to the pro-
posed dataset, with 3 genre labels and 5000 trailers; however,
we increase the number of trailers, labels, and frames. Our
dataset totals 8803 movie trailers drawn from Apple Trailers
and YouTube, with 37,866,450 individual video frames. You
can see the statistics of the dataset in Fig.[2]where we show that
a wide range of genres exists, with each trailer featuring, on
average, three labels. The distribution years of the trailers are
also more diverse than current datasets, with MM X-Trailer-20
featuring movie trailers from the 1930s to the present day.

The dataset has 20 genres - Action, Adventure, Animation,
Comedy, Crime, Documentary, Drama, Family, Fantasy, His-
tory, Horror, Music, Mystery, Science-Fiction, Western, Sport,
Short, Biography, Thriller and War, with up to six genre labels
for each trailer. Every trailer is a compact encapsulation of the
full movie through a short 2 to 3 minute video, and we collect
a weak proxy of genre classification by matching the trailer to
its user-generated entry on the website | imdb . coml

Evaluation Metrics: We use the standard retrieval metrics
as proposed in prior work [9} 20, 22]. The AU(PRC') (mi-
cro average), AU(PRC') (macro average), and AU(PRC),,
(weighted average). We also show weighted Precision (P,,),
weighted Recall (R,,), and weighted F1-Score (¥'1,,). For all
metrics, higher is better.

Coarse Grained Genre Classification Results: Tbl. 2] illus-
trates the quantitative performance of the coarse genre predic-
tion model MMX-Trailer-20 and the global metrics. The table
also shows the random baseline, which varies according to
the frequency of the genre in the dataset. Finally, the table ex-
plores each experts’ influence via an MLP on the coarse genre
classification task. Using collaborative gating yields a 10%
increase in basic fusion through concatenation. Unfortunately,
audio and scene are the weakest experts for the classification
task, which could be due to features that are not genre-specific,
such as dialogue and external environments. We find all vi-
sual experts perform best on Animation, most likely due to
its unique style compared with the other trailers. In contrast,
the audio expert performs better in Comedy and Sport. To
identify the importance of the collaborative gating unit, we
compute a naive concatenation of the feature embeddings from
the experts passed through an MLP layer (Naive Concat), with
a 10 point reduction which illustrates the importance of the
learnt collaborative gating framework.

Tbl. 3] shows the best performance of other approaches
on different datasets. Our model, MMX-Trailer-20 uses up
to 6 genre labels per sample from 20 genres, double most
other approaches and will affect the random baseline, which is
nearly half that of the 9 genre datasets. To contextualise our
method with others we compare previous approaches including
low level video features (VLLF) [24]], audio-visual features
(AV) [14.[7], and audio-visual features with convolutions over
time CTT-MMC [28]. From the results in Tbl. 3] we show
that our model performs better than low-level features. We do
not improve performance on other audiovisual approaches that
fine-tune pre-trained networks in an end to end manner as we
only train the collaborative gating layers and generate ‘expert’
embeddings offline for efficient retrieval and publication.

Fined Grained Genre Exploration: We evaluate the self-
supervised model by comparing the cosine similarity between
embedding vectors obtained from the encoder after training
the classification network and following self-supervised fine-
tuning. This is visualised in Fig.3[a), where the T-SNE plot
shows the learnt embedding for the coarse genre classifica-
tion. Fig.[B[b) is after the model’s self-supervised training,
where we can see how the clusters have broken up into an
overlapping distribution as genres are separated depending
on the multi-modal content. Three trailers (Cleopatra, Brave-
heart, and Darkest Hour) share the triple genre classification
of Drama, Biography, History and the coarse genre encoder
correctly clusters and labels these together despite the signif-
icant differences in their content. In Fig. Ekb), we find that
Cleopatra is drawn closer to Adventure films featuring deserts
and orchestral scores (Lawrence of Arabia is one example).
Braveheart shares a similarity with medieval and mythological
trailers featuring large scale battles, while Darkest Hour moves
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Table 2: Coarse genre classification of the MMX-Trailer-20 dataset. Across differing expert features and combinations methods

Model ‘Acm Advnt Animtn Bio Cmdy Crme Doc Drma Famly Fntsy Hstry Hrror Mystry Music SciFi Wstrn Sprt Shrt Thrll War‘ F1, AU(PRC), P, Ry
Support [130 197 46 13224 102 87 267 117 115 44 104 41 8 107 181 30 45 12 21| - - - -

Random 029 041 0.11 0.03 046 0.24 021 052 027 026 0.11 024 0.1 0.2 025 0.39 0.08 0.11 0.03 0.05/0.318 0.134 0.19 1

Scene [1T] 043 055 074 0 049 0.38 0.63 055 0.51 028 024 042 03 028 041 0.51 0.22 0.19 0.11 0.33/0.434 0.489 0.437 0.48
Audio [T] 047 051 040 0.10 0.61 0.38 0.58 0.55 0.51 037 0.11 034 039 030 035 0.55 0.16 0.15 0.13 0.12/0.454 0.449 0.400 0.537
Motion [6] 05 059 074 0 062 033 063 056 055 036 02 038 045 024 037 0.57 0.23 0.14 0.10 0.13]0.463 0.487 0.448 0.494
Image [12] 048 0.63 0.79 0.12 0.65 0.41 0.60 0.59 0.55 042 025 047 042 029 0.50 0.54 0.34 0.19 0.12 0.31/0.516 0.554 0.493 0.572
Image + Audio |0.52 0.63 0.78 0.15 0.65 042 0.68 0.6 0.63 046 025 050 0.51 034 049 059 0.38 0.28 0.12 0.42|0.544 0.558 0.476 0.65
Image + Motion {0.59 0.64 078 0 0.59 039 066 0.6 0.6 05 029 054 053 025 052 057 04 02 0.24 0.12]0.535 0.553 0.511 0.583
Image + Scene |0.52 0.61 0.80 0.12 0.61 0.37 0.65 0.62 058 049 0.15 051 049 037 048 0.56 0.43 0.26 0.12 0.46|0.531 0.539 0.490 0.600
Naive Concat 0.56 0.61 0.64 0.09 0.64 0.35 0.69 0.60 0.58 0.39 0.19 049 045 021 048 0.6 0.39 0.28 0.27 0.41/0.525 0.497 0.522 0.551
MMX-Trailer-20/0.62 0.69 0.71 0.11 0.71 0.53 0.73 0.62 0.64 0.51 0.34 0.56 0.60 0.45 0.50 0.64 0.30 0.11 0.13 0.55|0.597 0.583 0.554 0.697

Table 3: Comparison of our proposed approach with existing
methods for genre classification.

Method ‘no genres no labels‘AU(PRC) AU(PRC) AU(PRC),,
Random 9 Class 9 3 0.206 0.204 0.294
Random 20 Class 20 6 0.134 0.130 0.208
VLLF 9 3 0.278 0.476 0.386
AV 9 3 0.455 0.599 0.567
CTT-MMC [28] 9 3 0.646 0.742 0.724
Moviescope 13 3 0.703 0.615 -
Proposed MMX-Trailer-20| 20 6 | 0456 0.589 0.583

Documentary ¢

(a: Coarse) (b: Fine Grained) )

Fig. 3: Self-supervised Genre clustering via collaborative ex-
perts. (a) A T-SNE plot is showing the output of the coarse
genre encoder network. (b) The fine-grained genre model en-
courages embeddings to cluster according to their multi-modal
content.

towards a cluster featuring historical thrillers such as *The Im-
itation Game’. We can also show illustrative retrieval results.
For example, in Fig. ] we offer how the fine-grained network
finds movies with greater contextual similarity than the coarse
encoder. For example, given the movie trailer, "Giant Shark vs
Mega Octopus”, the fine-grained network generates clusters
of movies that feature sea monsters. You can view further
examples in the supplementary materials.

4. CONCLUSION

Previous works have shown the effectiveness of convolutional
neural networks and deep learning for genre classification.
However, these methods do not address the unique semantic
and contextual differences within these discreet labels. Using

Coarse

Fine I E
Coarse

Fig. 4: Retrieval results obtained from the bottleneck embed-
ding layer after training for coarse genre classification and
after fine-tuning with the fine-grained self-supervised network.
We show that the latter is much more effective at retrieving
trailers that share multi-modal information yet have the same
genre label.

a collaboratively gated multi-modal network, we show that
genre labels can be subdivided and extended using only visual
and audio features, with applications in video recommendation,
retrieval, and archiving.
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