Generative Data Augmentation for Skeleton Action Recognition

Abstract— Skeleton-based human action recognition is a
powerful approach for understanding human behaviour from
pose data, but collecting large-scale, diverse, and well-annotated
3D skeleton datasets is both expensive and labor-intensive. To
address this challenge, we propose a conditional generative
pipeline for data augmentation in skeleton action recogni-
tion. Our method learns the distribution of real skeleton
sequences under the constraint of action labels, enabling
the synthesis of diverse and high-fidelity data. Even with
limited training samples, it can effectively generate skeleton
sequences and achieve competitive recognition performance
in low-data scenarios, demonstrating strong generalisation in
downstream tasks. Specifically, we introduce a Transformer-
based encoder—decoder architecture, combined with a genera-
tive refinement module and a dropout mechanism, to balance
fidelity and diversity during sampling. Experiments on Hu-
manActl2 and the refined NTU-RGBD (NTU-VIBE) dataset
show that our approach consistently improves the accuracy of
multiple skeleton-based action recognition models, validating its
effectiveness in both few-shot and full-data settings. The code
will be released upon acceptance.

[. INTRODUCTION

Human action recognition is a key task in computer vi-
sion with applications in human-computer interaction, video
surveillance, healthcare, and virtual reality. Among vari-
ous modalities, 3D skeleton-based action recognition has
emerged as a lightweight, privacy-preserving solution. It
encodes only the positions of key joints, making it robust to
appearance, lighting, and background variations, while being
efficient in storage and computation.

However, acquiring large-scale, high-quality skeleton
datasets remains challenging. High-precision optical motion
capture systems require expensive specialised equipment,
with costs often exceeding $10,000 [27]. Therefore, other
datasets compromise by relying on depth sensors (e.g.,
Kinect V2) [33] or multi-view camera setups [48], [16],
which still demand controlled environments and active sub-
ject participation. Moreover, even in carefully controlled
settings, the captured data can still be highly cumbersome,
noisy, especially from depth sensors, and resource-intensive.
Deep learning based pose estimation methods can extract 3D
poses from RGB inputs [19], [3], but the results often suffer
from noise and inconsistencies, especially in unconstrained
scenes.

To address the high collection cost, limited diversity, and
noise in existing datasets, many approaches have explored
data augmentation [41], [39], [24], [15], [6]. These meth-
ods fall into two categories: transformation-based, which
apply spatial and temporal perturbations (e.g., rotation, scal-
ing, noise), and generation-based, which synthesise new
sequences using frameworks like VAEs, GANs, or diffusion

models [34], [30]. While the former often require care-
ful tuning of hyperparameters, the latter, while capable of
learning the underlying data distribution to generate realistic
samples, frequently suffers from limited diversity and a
strong dependence on large-scale data. Building on MDM
[37], we introduce a conditional semantic encoder and the
fidelity—diversity control module, and replace classifier-free
guidance with classifier guidance during sampling to priori-
tise class alignment for recognition explicitly.

Specifically, as shown in 1, this work proposes a con-
ditional diffusion-based data augmentation method for 3D
skeleton-based action recognition. Our method can efficiently
generate high-fidelity, diverse, discriminative, and label-
consistent skeleton data, providing both realistic variations
and strong supervision signals for downstream recognition
models. In the training phase, our method employs a Trans-
former encoder to extract the semantic information of the
original skeleton data, while incorporating action labels
as supervision signals. The Transformer decoder takes the
noise tokens together with the conditional representation,
which integrates semantic features, temporal information,
and action labels. Guided by both reconstruction and classi-
fication objectives, it progressively denoises the tokens into
label-consistent skeleton sequences, while jointly capturing
structural priors and maintaining label consistency. In the
inference phase, the diffusion model generates realistic and
label-consistent skeleton sequences. To further improve gen-
eration quality, we design a Generative Refinement Module
(GRM) and introduce a sampling-time dropout mechanism
to balance fidelity and diversity, encouraging the model to
produce discriminative and label-consistent variations. Our
method is highly efficient, requiring only a single training
phase. Once trained, the model is capable of generating large-
scale skeleton data during inference, while allowing explicit
control over the trade-off between diversity and fidelity in
the generated samples.

We conduct extensive experiments on HumanAct12 [11]
and Refined NTU-RGBD (NTU-VIBE) [33], [11], evaluating
generation quality and downstream recognition performance.
Our method demonstrates strong generalisation, particularly
in low-data scenarios, where adding synthetic samples sig-
nificantly improves accuracy, reaching levels comparable
to those achieved with full data training. We conducted
comprehensive experiments to evaluate the effectiveness of
our method. By assessing the generation results and the
performance on downstream skeleton-based action recog-
nition tasks, we demonstrated the superior performance of
our approach. In scenarios with limited real data, adding
synthetic samples significantly improves accuracy, reaching
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Overview of our approach. With only a small set of labelled skeleton sequences, the model generates diverse and high-fidelity samples. When

combined with a reduced amount of real data for training, these synthetic samples enable our skeleton action recognisers to achieve performance close to

the state of the art on HumanAct12 and Refined NTU RGB+D.

levels comparable to using more real data that would be
expensive and challenging to obtain. Furthermore, we con-
ducted experiments to optimise the augmentation process by
balancing diversity and fidelity in the synthetic data. More-
over, our data augmentation method demonstrates strong
generality, as it can be adapted to various skeleton data
formats and is compatible with a wide range of skeleton-
based action recognition datasets and methods.
Contributions:

« We propose a conditional skeleton generation method
based on diffusion models, conditioned on action labels,
to generate diverse and realistic motion sequences. By
generating large amounts of high-quality data from
limited training samples, our approach reduces the need
for costly large-scale data collection.

o We introduce a transformer encoder that extracts se-
mantic representations from skeleton inputs and incor-
porates action labels as conditional signals to guide the
diffusion-based generation process.

o We introduce a Generative Refinement Module (GRM)
and sampling-time dropout to control fidelity and diver-
sity in the synthetic data jointly.

« We validate our method across two datasets and mul-
tiple skeleton action recognition backbones, showing
improvements in both few-shot and full-data training
scenarios. Additionally, we conduct ablation studies to
evaluate the contribution of each module and assess the
quality of generated skeletons using standard metrics.

II. RELATED WORK
A. Diffusion Models.

Diffusion models [35], [36] are generative models that
produce data by learning to reverse a progressive noising
process. Denoising Diffusion Probabilistic Models (DDPM)
[12], [36] and Denoising Diffusion Implicit Models (DDIM)
have demonstrated state-of-the-art results in image gener-
ation. Conditional diffusion techniques, such as classifier
guidance [8] and classifier-free guidance [13], enable fine-
grained control during sampling. Beyond images, diffusion
models have shown strong potential in motion generation
tasks. Human motion is typically represented as sequences

of joint data in 2D, 3D, or SMPL [23], [45]. Recent works
[371, [4], [29], [7], [18], [21] have shown strong success
in synthesising realistic, diverse, and controllable motion
sequences. While diffusion models have been explored for
motion generation, no prior work has applied conditional dif-
fusion for label-guided skeleton augmentation in recognition
pipelines.

B. Synthetic Data for Augmentation.

Data scarcity often leads to overfitting and poor gen-
eralisation in neural networks, especially under low-data
regimes. Traditional augmentation methods [20] introduce
simple transformations (e.g., flips, noise, crops) but are
limited in diversity. Generative approaches overcome this by
learning data distributions to produce new samples. Early
work like DAGAN [1] and BigGAN [2] explored this idea
to generate diverse image data for improving classification
tasks. More recent efforts leverage text-to-image diffusion
models. The study by Jahanian et al. [17] explored the feasi-
bility of learning general-purpose visual representations from
generative models instead of relying solely on original data.
With the rapid development of diffusion models in recent
years, this technology has become a new trend in generating
training data, benefiting from its stationary training objective,
high diversity, and conditional generation capabilities. [38]
proposed DA-Fusion that utilised a large pre-trained text-to-
image diffusion model to address the weaknesses of standard
data augmentation while retaining the strengths. For skeleton
data, augmentation is less explored. [26] analyses synthetic
data on the fall-down detection task. [6] proposed a skeleton
data augmentation method derived from observations of
inaccuracies in human pose estimation. The works apply
geometric perturbations (e.g., rotation, translation) or sim-
ulate occlusion. However, most do not model the complex
distribution of temporal joint sequences. To our knowledge,
this is the first work to apply conditional diffusion models
for class-aware skeleton data augmentation, enabling label
consistent generation at scale.

C. Skeleton Action Recognition.

Early skeleton recognition methods relied on handcrafted
features and classical classifiers [14], [40], but they re-
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Overview of our proposed network. (Top) Conditional Skeleton Diffusion Module. The encoder processes a skeleton feature sequence together

with the noise step ¢ and the corresponding action label, producing a conditional representation. A Transformer-based decoder then reconstructs the clean
skeleton sequence from the noise-corrupted input, guided by this representation. In addition, a lightweight classification network is introduced to encourage
label-consistent generation. (Bottom) Sampling Process. The sampling input consists of the conditional representation and random noise, where the noise
incorporates both label information and semantics from the original data. The decoder progressively denoises the sequence from step T to 1, generating a
clean skeleton motion. A Generative Refinement Module and Dropout further enhance the balance between semantic fidelity to the action and diversity of

the generated motions.

quire manual feature design, are sensitive to noise/viewpoint
changes, and poorly capture long-range dynamics. With the
development of deep learning, recognition has shifted from
handcrafted pipelines to end-to-end RNN/GCN/Transformer
architectures that learn robust spatiotemporal representations
from raw skeletons. Graph Convolutional Networks (GCN5s)
became the standard due to the ability to model the spatial
and temporal relationships of skeleton data effectively. ST-
GCN [42] introduced spatial-temporal graphs but incurred
a high computational cost. MSG3D [22] captured multi-
scale patterns; CTR-GCN [5] used channel-wise topology
refinement to learn adaptive topologies and aggregates joint
features for dynamic structure learning; BlockGCN [44]
simplified the graph via blockwise partitioning, performing
independent modelling within each block but with limited
temporal modelling. We use these models as baselines to
evaluate the benefit of our synthetic data.

III. METHODOLOGY

A. Diffusion Models Preliminary

Diffusion models [12], [25], [31] are generative frame-
works that learn data distributions by simulating a forward
process that gradually adds Gaussian noise, and a reverse
process that removes it. In the forward process, the pos-
terior distribution is implemented as a Markov chain that
recursively adds noise to the sample through the conditional
probability. This process can be denoted as:

T

g(xir[%0) = [ Ja(xix-1) (1)

t=1

(I(Xt|xt—1) = f/V(Xt; vV 1- ﬁtxf—laﬁfl) )

Here f3; is a variance schedule. Given a timestamp ¢, the
q(x;) can be approximated as

X = VX ++/1— oy, 3)

where & = ngl a,. Rather than predicting the noise &,
we follow recent work [37], [28] to directly predict the
original sample xp itself from the noisy input. The training
objective is:

L= IE:xo~q(x0|c),r~[l,T] [”XO - G(Xht?c) ”%} ) “)

where ¢ and ¢ denote the timestamps and condition,
respectively.

B. Conditional Diffusion Model

An overview of our pipeline is illustrated in Figure 2. The
architecture is a Transformer model with action labels as
conditioning signals. The model includes

o Conditional Encoder: A Transformer encoder to ex-

tract latent feature representations from the skeleton
input data along with timestep and label embeddings.

o Conditional Decoder: A Transformer decoder recon-

structs the original skeleton data, taking the encoder



TABLE I
THE 263-DIMENSIONAL FEATURE VECTOR EXPLANATIONS.

Component Dimensions  Description

Joint Positions 22x3=66 3D coordinates (x,y,z) for 22
joints

Joint Velocities 22x3=66  Velocity vectors for each joint

Joint Rotations 22x6=132 6D rotation representations
(more stable than quaternions

or Euler angles)

Global Translation 3 Overall body translation in 3D
space

Global Velocity 3 Global movement velocity of
the body

Total 263 Combined total of all feature

components

features, concatenated with the skeleton data corrupted
by noise through the diffusion process.
During sampling, we use a Generative Refinement Module
(GRM) to discard low-fidelity generations and apply dropout
to promote diversity further, ensuring that the final output is
both discriminative and robust for downstream tasks.

C. Input Representation.

Skeleton data is compact but semantically rich. In our
setting, the original HumanAct12 dataset provides 3D coor-
dinates for 22 skeletal joints. Following the HumanML3D
representation [10], we convert each frame into a 263-
dimensional feature vector, where the 22 joints are re-
encoded to jointly capture 3D positions, local orientations,
and dynamic attributes such as velocities. This extended
representation offers a more comprehensive description of
human motion, preserving both spatial configurations and
temporal dynamics, while remaining computationally effi-
cient compared to raw mesh or video data. Detailed con-
struction of the 263-dimensional features is provided in I.

D. Conditional Encoder

The input 263-dimensional feature sequence is first pro-
cessed with temporal positional embeddings to preserve
frame-wise order information. The action label ¢ is repre-
sented as a one-hot vector and embedded through an MLP,
while the diffusion timestep ¢ is similarly mapped into the
latent space. These conditional embeddings are concatenated
and projected as a prefix token z;, which is then prepended
to the feature sequence and fed into the encoder. The
conditional encoder allows the model to incorporate both
semantic (action label) and temporal (timestep) guidance
during representation learning.

E. Conditional Decoder

The decoder takes the noisy feature sequence together with
the conditional prefix token z;; and performs token-level self-
attention to reconstruct the underlying motion dynamics. It
outputs a denoised 263-dimensional feature sequence, which
is then passed through a 2-layer MLP classifier to predict the

action label. This auxiliary classification objective provides
label supervision, ensuring that the generated motion not
only reduces diffusion noise but also remains consistent with
the intended action semantics.

F. Sampling Process

Our sampling involves predicting the clean sample X
at each time step ¢, and then adding noise to regress it
back to x;,_;. This iterative process continues from ¢ =T
until + = 0, producing the final sample xp. Unlike previous
work [32], [37], which uses classifier-free guidance (oc-
casionally masking conditions), we condition explicitly on
labels throughout training and sampling, as fidelity to specific
actions is essential for data augmentation. To encourage
sample diversity and prevent the model from overfitting
to label-conditioned patterns, we apply dropout within the
denoising network during the sampling process. The stochas-
ticity introduced in token activations allows our model to
take a single action label as input and generate multiple
diverse motion sequences with subtle variations not only in
joint dynamics but also in higher-level semantics such as
speed, thereby enriching data diversity without the need for
extensive skeleton data collection.

G. Generative Refinement Module (GRM)

The GRM evaluates generated samples Xy using a devi-
ation measure d(£p,xp). Samples exceeding the threshold ©
are discarded, and the retained set is defined as

S = {3 | d(%0,%) <7}, 5)

where xo denotes the reference ground-truth sample (or its
conditional embedding), d(-) is the deviation metric (e.g., {»
distance in the 263-dimensional feature space), and 7 is the
deviation threshold. This filtering ensures that retained sam-
ples remain close to the real distribution (fidelity), while the
combination with sampling-time dropout introduces diverse
yet label-consistent variations.

H. Loss function

Our total loss combines a Reconstruction loss and Clas-
sification loss. The Reconstruction loss .%.. enforces the
generated samples to match the target data in the integrated
263-dimensional feature space. where G(x;,¢,¢) is the gen-
erated skeleton and x is the ground truth. The Classification
loss Z,;; is a cross-entropy loss applied to the predicted
action class of the generated data.

Lrec = Eyy s [HXO_G(xtatvc)H%] (6)

1 N
Las = = Y logoy, (fi) (7)
i=1

Where fi denotes the predicted logits for the i-th sam-
ple, and oy;(f;) represents the predicted probability for the
ground-truth class label y;, obtained via the softmax function
applied to f;. The total loss .Z adopts a weighted combination
of the reconstruction loss and the classification loss, where
A is a weighting hyperparameter used to balance.



TABLE I

COMPARISON ON HUMANACT12 USING SKELETON-BASED ACTION RECOGNITION MODELS. RESULTS ARE REPORTED AS mean + std OVER 5

INDEPENDENT RUNS; METHODS MARKED WITH * DENOTE MODELS TRAINED ON AUGMENTED DATA (REAL + SYNTHETIC). IMPROVEMENTS

BROUGHT BY OUR AUGMENTED DATA ARE HIGHLIGHTED IN GREEN.

Real Data Usage

Method
100% 95% 90% 75%
STGCN++ [9] 78.47 +2.09 77.78 +2.55 75.83 +1.24 73.89 +0.38
STGCN++* 83.19 £2.73 (14.72)  81.63 £2.05 (13.85) 81.50+1.47 (15.66) 81.11 +0.80 (17.22)
MSG3D [22] 80.42 +1.99 77.64 +1.50 76.94 +2.43 74.86 +1.80
MSG3D#* 83.11 £3.46 (12.69) 83.24 £1.23 (1560) 81.77 +1.18 (14.83)  80.50 +0.68 (15.64)
CTRGCN [5] 77.78 £1.97 76.94 +2.10 75.56 +1.42 73.61 +2.41
CTRGCN* 7942 1202 (11.64)  79.59 +1.83 (12.65) 80.16 £2.20 (14.60) 78.25 £1.72 (14.64)
BlockGCN [44] 77.78 +£1.30 75.67 +1.30 75.56 +0.76 75.56 +0.90
BlockGCN* 78.91 +0.41 (11.13)  78.67 £1.63 (13.000 78.19 +038 (12.63) 77.17 £0.72 (11.61)
TABLE 111

COMPARISON ON THE REFINED NTU RGB+D DATASET USING SKELETON-BASED ACTION RECOGNITION MODELS. RESULTS ARE REPORTED AS

mean + std OVER 5 INDEPENDENT RUNS; METHODS MARKED WITH * DENOTE MODELS TRAINED ON AUGMENTED DATA (REAL + SYNTHETIC).

IMPROVEMENTS FROM OUR AUGMENTED DATA ARE HIGHLIGHTED IN GREEN.

Real Data Usage

Method
25% 20% 15% 10%
STGCN++ [9] 91.55 +0.62 90.95 +1.04 89.94 +1.06 83.01 +2.15
STGCN++* 92.36 +033 (10.81) 92.14 +0.87 (11.18)  92.07 +0.76 (12.13) 85.38 £1.13 (12.37)
MSG3D [22] 90.97 +1.08 89.74 +233 87.41 +1.30 79.48 +1.87
MSG3D* 92.30+039 (11.33)  90.36 £0.68 (10.62) 89.90 +£1.59 (12.49) 83.17 £1.13 (13.69)
CTRGCN [5] 90.81 +1.07 90.78 +0.20 87.57 +2.69 79.28 +1.46
CTRGCN* 91.13 £134 10.32)  90.97 £0.49 (10.19)  89.45 +035 (11.88) 83.17 £1.34 (13.89)
BlockGCN [44] 90.03 +0.72 88.51 +1.11 86.70 +1.46 75.05 +1.43
BlockGCN* 90.91 +0.54 (10.88) 89.13 +1.16 (10.62)  86.05 £1.42 (10.65) 84.43 +0.72 (19.38)
clips across 13 action categories, such as squat down,
L = Lrec + AaisZLots (8) sitting down, and throw.

IV. EXPERIMENTS AND RESULTS
A. Datasets.

We evaluated our method on two benchmark datasets:
HumanActl12 [11] and the Refined NTU-RGBD (NTU-
VIBE) [33], [11].

o HumanAct12 was a high-quality motion dataset derived
from PHSPD [47], [46]. It contained 1,191 motion
clips and over 90,000 frames across 34 fine-grained
action categories. Actions included detailed labels such
as lift dumbbell with right hand and drink bottle left
hand, enabling conditional generation with strong label
guidance.

o Refined NTU-RGBD was an improved version of
the original NTU-RGBD [33] dataset, with 3D joint
annotations recomputed using the VIBE [19] method for
better consistency and realism. It included 3,902 motion

Although our experiments focus on HumanActl2 and
NTU-VIBE, our method is architecture- and dataset-agnostic,
and could be extended to other skeleton-based datasets with
minimal modification.

B. Usage Protocols.

For HumanAct12, we conducted experiments under differ-
ent data availability settings by randomly sampling 75%,
90%, 95%, and 100% of the original training data to train
the diffusion model. For downstream evaluation, we then
augmented the selected real data with 5x synthetic samples
generated by the diffusion model and tested the recognition
accuracy on the validation set.

For Refined NTU-RGBD, we also considered different
data availability settings in the few-shot regime, using only
10%, 15%, 20%, and 25% of the original training data to
train the diffusion model. Each subset was similarly aug-



mented with 5x synthetic samples generated by our method
during downstream evaluation. This demonstrates that even
with limited real data, supplementing with label-consistent
synthetic sequences can significantly improve recognition
accuracy and approach the performance achieved with sub-
stantially larger real datasets.

We conclude that using 5x synthetic data represents a
practical trade-off: generating substantially more data leads
to redundancy and slows down the generation process, while
too few synthetic samples provide only limited performance
gains.

C. Implementation Details.

Each skeleton sequence was loaded and filtered through
preprocessing to ensure a minimum length. Motion data
was normalised using the dataset-specific mean and standard
deviation, and randomly cropped to a fixed-length window of
T =48 frames during training. Action labels were converted
to 13-way or 34-way one-hot vectors based on predefined
NTU and Humanactl2 classes. We trained our method with
Adam using a learning rate of 1 x 10~#, which was decreased
by 0.1 at each step. Training was conducted for 600 epochs
on a single NVIDIA RTX 3090 with a batch size of 256. The
Transformer encoder and decoder each consisted of 4 layers
and 4 attention heads. For downstream action recognition,
we used STGCN++[9], MSG3D[22], CTRGCN [5], and
BlockGCN [44], applying their default configurations.

D. Data Augmentation Evaluation

We evaluated performance by comparing the classifica-
tion accuracy of the four state-of-the-art skeleton action
recognition models, trained on real data only and reduced
amounts of real data supplemented with our synthetic data.
The results showed consistent gains, particularly in low-data
settings. Tables II and III (HumanActl2 and NTU-VIBE,
respectively) highlight accuracy gains achieved by augment-
ing the real data with our generated data. Performance is
most pronounced when less real data is used, validating
the value of our approach in few-shot contexts. On the
HumanActl12 dataset, we observed that while using 95%
or 90% of real data yields reasonable performance, training
with only 75% real data augmented by our synthetic samples
surpasses them, and even outperforms the model trained on
100% real data, demonstrating superior data efficiency and
augmentation quality. On the NTU-VIBE dataset, BlockGCN
with 15% data performs slightly worse, which may be due
to overfitting from synthetic data. We observe consistent im-
provements across backbones with varying capacity — from
lightweight STGCN++ to deeper BlockGCN — highlighting
the generality of our approach.

E. Data Distribution Evaluation

To examine whether our conditional diffusion augments
the dataset in a label-consistent manner, we compare the
distribution of real vs. synthetic samples using a t-SNE
2D projection. As shown in Figure 3, real samples are
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Fig. 3. t-SNE visualisations comparing real and synthetic skeleton
samples of (a) HumanActl2 and (b) Refined NTU-RGBD (NTU-VIBE).
Real samples are denoted by (o), and synthetic samples are denoted by (V).

shown as circles (o), while synthetic samples are shown
as inverted triangles (V). We observe that the synthetic
samples densely populate the existing class regions, ef-
fectively enlarging per-class coverage without shifting the
class centroids, thereby preserving fidelity. At the same
time, some synthetic points appear along the edges of the
clusters, filling low-density areas that are under-represented
in the real set; this expands intra-class boundaries while
remaining label-consistent, yielding greater diversity and
improved generalisation in few-shot regimes. To quantify
this effect, we compute the average within-class cluster
covariance, i.e., the trace of the per-class covariance matrix
averaged across classes, which reflects intra-class dispersion.
As shown in Table IV, covariance increases on both datasets
when synthetic samples are added, indicating broader intra-
class coverage while preserving label consistency. Overall,
the visualisation and quantitative results indicate that our
generator adds both quantity and diversity while maintaining
clear inter-class separation.

FE. Reconstruction Evaluation

To evaluate skeleton generation quality, we compared
our method with MDM [37] and T2M-GPT [43], using
four metrics: FID (Fréchet Inception Distance), KID (Kernel



TABLE IV
COMPARISON OF AVERAGE WITHIN-CLASS CLUSTER COVARIANCE
BEFORE AND AFTER APPLYING DATA AUGMENTATION.

Dataset Original +Aug Difference

HumanAct12 10.926 11.490 +0.564

NTU-VIBE 4.392 4.753 +0.361
TABLE V

ABLATION STUDY OF STGCN++ RESULTS ON THE HUMANACT12
DATASET USING THE VALIDATION SET, TRAINED WITH 100% OF THE
DATA, UNDER DIFFERENT COMBINATIONS OF MODULES. RESULTS ARE
REPORTED AS mean + std OVER 5 INDEPENDENT RUNS.

Module | Condition ~CLS Loss  Dropout  Refinement | STGCN++ Acc.
Baseline X X X X 78.77 +2.65

v X X X 80.62 +£1.58

v v X X 81.98 £2.56

v v v X 80.77 +2.67
All Qurs) | v v v v | 819273

Inception Distance), Diversity, and Precision/Recall. Detailed
explanations of these metrics were provided in the sup-
plementary materials. As shown in Table IX, our method
achieves the lowest FID and comparable KID, indicating that
the generated motions are most similar to real data regard-
ing overall distribution and visual coherence. The highest
diversity among generative models demonstrates a strong
ability to produce a wide range of motion styles rather than
repetitive patterns. While T2M-GPT slightly outperforms
Precision, suggesting high realism in individual samples,
our method maintains a strong balance across all metrics.
These results indicate that our approach generates realistic
motions and captures a broader spectrum of plausible human
movements, outperforming prior methods in fidelity and
diversity.

G. Ablation Study

1) Evaluation of proposed modules: We conduct an
ablation study by incrementally adding each module to
STGCN++ using HumanActl2 with 100% data usage: As
shown in Table V, incorporating condition embedding and
classification loss yielded an accuracy improvement of
2.35%. Although Sampling Dropout enhanced diversity, it

TABLE VI
SKELETON-BASED ACTION RECOGNITION PERFORMANCE
ON HUMANACT12 UNDER DIFFERENT DROPOUT RATES.
GREEN CELLS INDICATE THE BEST PERFORMANCE PER

COLUMN.
Ratio 100% 95% 90% 75%
Dropout 0 | 83.85 84.62 80.77 83.85
Dropout 0.1 | 82.31 82.31 83.85 80.00
Dropout 0.2 | 86.15 86.15 80.00 84.62
Dropout 0.5 | 84.62 84.62 83.08 81.54

also introduced fidelity degradation issues when used in-
dependently. However, this issue was effectively mitigated
by the Generative Refinement Module, which enabled our
method to maintain diversity and accuracy, as evidenced
by the highest performance of 83.19% achieved using all
proposed components.

2) Dropout and Renoise Strategy Comparison: We evalu-
ated the impact of different dropout rates and GRM renoise
values on model performance. As shown in Table VI, we
tested four dropout settings during the sampling stage: no
dropout, 0.1, 0.2, and 0.5. The results indicate that higher
dropout values increase diversity but also lead to a loss
of fine-grained details. A dropout rate of 0.2 achieved
the best performance for downstream skeleton-based action
recognition with STGCN++ during sampling, suggesting
that introducing a moderate dropout value can enhance the
diversity of generated skeletal motions while also improving
recognition accuracy.

As shown in Table VII, we further examined the Gen-
erative Refinement Module (GRM) under different renoise
values. Here, renoise refers to a threshold such that generated
samples with deviations larger than this value from the
original data are discarded. On the HumanActl2 dataset,
using renoise values between 10 and 20 proved effective
in filtering out distorted samples, thereby reducing their
negative impact on downstream action recognition tasks.
Notably, in the downstream main results, we adopt unified
dropout and GRM values and report the average over five
repeated runs, which yields more robust results across tasks.
Although both sets of parameters require manual tuning, they
exhibit a certain degree of robustness: even when the chosen
values are not optimal, the model still surpasses the baseline
in downstream performance.

3) Comparison of Data Augmentation Methods: We com-
pared the effectiveness of different data augmentation meth-
ods on downstream tasks in Table VIII. Unlike conventional
methods, which indiscriminately perturb motion data without
considering semantic consistency, our conditional generative
approach produces label-consistent and realistic motion vari-
ations, enhancing diversity and performance, particularly in
low-data settings.

TABLE VII
SKELETON-BASED ACTION RECOGNITION PERFORMANCE
ON HUMANACTI12 UNDER DIFFERENT GRM RE-NOISE
VALUES. GREEN CELLS INDICATE THE BEST PERFORMANCE

PER COLUMN.

Ratio ‘ 100% 95% 90% 75%
Renoise 1 80.77 83.08 81.54 85.38
Renoise 2 | 83.08 83.08 84.62 82.31
Renoise 3 83.08 81.54 8231 81.54
Renoise 5 82.31 81.54 83.08 78.46

Renoise 10 | 83.85 84.62 80.77 80.00
Renoise 20 | 85.38 83.85 80.77 87.69
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Fig. 4. Visualisation of our generated skeleton sequences conditioned on action labels. Our results demonstrate that our method generates diverse motion
patterns while preserving label-specific semantics. Additional visualisations are provided in the supplementary file.

TABLE VIII
ACCURACY OF DIFFERENT DATA AUGMENTATION METHODS ON
HUMANACT12 FOR SKELETON-BASED ACTION RECOGNITION.

Ratio \ 100% 95% 90% 75%

W/O Augmentation | 75.69 77.78 75.00 73.61

Gaussian Noise 7847 79.17 79.86 79.86

Scaling 79.17 77.08 75.00 72.22

Rotating 79.17  77.08 79.86 75.00

Ours \ 81.54 80.77 80.00 80.56
TABLE IX

COMPARISON OF SKELETON GENERATION QUALITY ON THE
HUMANACT12 DATASET.

Method | FID | | KID | | Diversity T | Precision? | Recallt
Real data | 08398 | 0.0001 | 7217 | 099% | 0999
MDMe-orig [37] 11.3120 | 0.0512 6.223 0.996 0.896
MDM 24.9942 | 0.1168 3.7580 0.998 0.390
T2M-GPT[43] 2.0362 0.0057 6.6808 0.999 0.980
Ours | 13288 | 00170 | 68087 | 099 | 0.994

4) Qualitative Results: Figure 4 presents visualisations of
conditional skeletal generation results. By analysing these
qualitative results, we highlighted the diversity and fidelity
of the generated samples. The results illustrated how our
method preserved label-specific semantics while introducing
subtle variations in key joints relevant to action recogni-
tion, in contrast to conventional skeleton data augmentation
methods that mainly rely on simple geometric transforma-
tions. Moreover, the visualisations indicate that our generated
data carries clear physical meaning, such as variations in
movement speed and joint angles, since the 263-dimensional
inputs encode rich physical attributes rather than mere skele-
ton points. Additional visualisations are provided in the
supplementary material.

V. CONCLUSION

We presented a conditional diffusion framework for
skeleton-based action recognition, generating diverse, label-
consistent motion sequences. Our approach significantly
improves recognition performance, especially under limited
data conditions, and consistently benefits a range of skeleton
action recognition backbone architectures. We demonstrated
how our design balances fidelity and diversity through ex-
tensive ablations, enabling scalable and controllable aug-
mentation. This work represents a significant step forward
in generative augmentation for structured human motion
data, with practical implications for data-efficient learning
in action recognition tasks and for reducing the cost of
collecting large-scale skeleton data.

a) Limitations and Future Work: While our method
generalises well across datasets and models, generation qual-
ity may degrade for rare or ambiguous actions under extreme
label imbalance. As future work, we will investigate adaptive
sampling and uncertainty-aware conditioning to enhance
robustness and extend the model to multi-person interactions
and longer motion sequences.
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