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Abstract

This work proposes UIL-AQA for long-term Action Quality Assessment AQA designed to be clip-level interpretable and
uncertainty-aware. AQA evaluates the execution quality of actions in videos. However, the complexity and diversity of actions,
especially in long videos, increase the difficulty of AQA. Existing AQA methods solve this by limiting themselves generally
to short-term videos. These approaches lack detailed semantic interpretation for individual clips and fail to account for the
impact of human biases and subjectivity in the data during model training. Moreover, although query-based Transformer
networks demonstrate strong capabilities in long-term modelling, their interpretability in AQA remains insufficient. This
is primarily due to a phenomenon we identified, termed Temporal Skipping , where the model skips self-attention layers
to prevent output degradation. We introduce an Attention Loss function and a Query Initialization Module to enhance the
modelling capability of query-based Transformer networks. Additionally, we incorporate a Gaussian Noise Injection Module
to simulate biases in human scoring, mitigating the influence of uncertainty and improving model reliability. Furthermore,
we propose a Difficulty-Quality Regression Module, which decomposes each clip’s action score into independent difficulty
and quality components, enabling a more fine-grained and interpretable evaluation. Our extensive quantitative and qualitative
analysis demonstrates that our proposed method achieves state-of-the-art performance on three long-term real-world AQA
datasets. Our code is available at: https://github.com/dx199771/Interpretability- AQA

Keywords Action quality assessment - Long-term video understanding - Interpretability - Uncertainty

1 Introduction human judges, offering a consistent and unbiased evaluation

of action quality and aiming to enhance accuracy, robust-

AQA aims to automatically evaluate human action quality
in videos by assigning numerical scores based on predefined
criteria. AQA methods strive to eliminate the subjectivity of
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ness, and generalisation by leveraging past performance data.
Recently, this problem has attracted growing attention from
the computer vision research community due to its broad
applicability in real-world scenarios. It has been utilized in
sports video analysis, particularly in disciplines such as syn-
chronized swimming, figure skating, and gymnastics (Parmar
and Morris, , 2017; Parmar & Tran Morris, 2019; Pirsiavash
et al., 2014; Venkataraman et al., 2015; Xu et al., 2019;
Zeng et al., 2020; Parmar & Morris, 2019). It offers analyt-
ical support for athletes’ performances by assisting judges
in scoring, helping athletes analyse their performance, and
enabling movement correction to improve technique and
prevent errors and injury. Beyond sports, AQA also finds
applications in medical care assessment, such as surgical skill
training (Funke et al., 2019; Wang et al., 2020; Gao et al.,
2014), rehabilitation therapy (Li et al., 2024), and physical
activity analysis (Parmar et al., 2022). Additionally, AQA is
widely used in technical skill assessment, including profes-
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sional skill training (Doughty et al., 2018, 2019) and task
performance evaluation (Li et al., 2019b), to provide objec-
tive and data-driven analysis across various domains.

In contrast to our previous BMVC version, which focused
on temporal skipping and Quality-Difficulty Regression, the
main contribution of the current work is to introduce a novel
uncertainty-aware learning mechanism that further enhances
the performance of AQA. Specifically, we inject Gaussian
noise into the predicted scores during training to simulate
real-world ambiguity in human judging, where subjectivity
and inconsistency frequently lead to variability in scoring
outcomes. This simple yet effective strategy enables the
model to explicitly model uncertainty, improving robustness
to minor perturbations in both feature and score spaces. As
a result, the model generates more stable and reliable pre-
dictions under noisy or ambiguous conditions—well aligned
with real-world AQA settings where annotation noise and
rater disagreement are common. We further compare our
approach with existing uncertainty-aware AQA methods and
demonstrate superior performance and generalisation ability,
highlighting a more robust and human-aligned evaluation
framework. In addition, we expand the related work sec-
tion with a more comprehensive review of interpretable
AQA methods, critically analysing architectural assump-
tions, interpretability mechanisms, and generalisation capa-
bilities. Furthermore, extensive ablation studies validate the
effectiveness of each proposed component, including differ-
ent Transformer architectures, the impact of the attention
loss, and the effect of query variance. These are supported
by both quantitative results and attention map visualisations.
We also include an efficiency analysis of FLOPs, parameter
count, and inference time, showing that our method achieves
comparable efficiency while offering better interpretability
and performance. Finally, we conduct a user study to quali-
tatively assess the interpretability of our predictions, offering
insights into how humans perceive difficulty and quality. In
summary, the technical differences from the original BMVC
paper lie in the

e Introduction of an uncertainty-aware learning mecha-
nism via Gaussian noise injection and comparison with
other uncertainty-aware methods.

e Expanded interpretability analysis, including attention
visualisation and a user study.

e Comprehensive comparisons with prior interpretable
AQA methods.

e Additional ablation studies on key modules such as atten-
tion loss and query variance.

e Efficiency analysis covering FLOPs, model parameters,
and inference time.

e The discussion and addressing of a weakly-supervised
disentanglement problem in AQA by separating difficulty
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and quality from video-level scores without any segment-
level annotations.

1.1 AQA Challenges

AQA is generally regarded as a score regression task, with
specific approaches (Parmar & Morris, 2019; Pan et al., 2019;
Xu et al., 2019; Zhang et al., 2024a; Wang et al., 2021a)
predicting the final score of an entire action sequence by
applying simple averaging to clip features and utilizing an
MLP regression head for aggregation as shown in Fig. 1.
However, a single score cannot offer detailed insights into
individual components or subtle variations. Also, not all seg-
ments contribute equally to the final score; simple averaging
assumes that all frames or segments have the same weight,
which may lead to incorrect scoring. Moreover, such models
inherently lack interpretability, making it difficult to under-
stand how specific elements contribute to the final evaluation.
For example, in diving evaluation, the size of the splash upon
water entry is a key scoring factor. Still, in the previous
approaches, its weight may be reduced due to inter-frame
averaging. In sports scenarios where technical skills and exe-
cution proficiency are critical, such as diving, gymnastics and
artistic swimming, judges determine the final score by assign-
ing weights to each action clip based on its execution quality
and difficulty level, such as in Fig. 2. Furthermore, incor-
porating quality and difficulty-based scoring mechanisms in
AQA models can significantly enhance their interpretability.
Interpretability is crucial for AQA, improving transparency
and trust in automated scoring models by making decision-
making processes understandable. By explicitly modelling
quality and difficulty factors, the system can better explain
how each action contributes to the final evaluation, improv-
ing the fairness and usability of the model as shown in Fig. 3.
Our method uniquely integrates clip-level semantic insights,
addressing both the interpretability and scoring bias chal-
lenges.

Another challenge in sports action assessment is the sub-
jectivity and scoring bias among judges, which results
in uncertainty, where the same action may receive varying
scores. For example, individual judging styles in diving eval-
uation may heavily influence specific scores. If the model
learns only fixed patterns from the data, it may overfit
against specific judges, reducing its generalisation ability.
This requires the model to possess the ability to adapt to
scoring biases and the capability to model uncertainty, ensur-
ing that it learns generalised evaluation standards rather than
merely fitting the scoring patterns of specific judges.

Furthermore, previous studies on AQA (Roditakis et al.,
2021; Bai et al., 2022) have primarily examined short-term
videos, such as diving. These videos usually span only a
few seconds, exhibit a straightforward sequential structure,
and are all captured using a single camera. In contrast, long-
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Fig.1 Comparison with previous AQA methods, which perform single-
score regression on short-term videos dataset, lacking interpretability
and failing to account for uncertainty. Our proposed network extends
to long-term video datasets, addressing subjectivity and scoring bias
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among different judges, ensuring more robust and reliable predictions.
Furthermore, leveraging clip-level features and a dual difficulty-quality
head enhances interpretability and improves regression performance
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Fig. 2 The visualisation of the clip-level difficulty-quality regression
method highlights that our network can mirror the evaluative framework
employed by human judges in practical settings. The blue curve, repre-
senting the difficulty, signifies the relative contribution of each action

clip to the final assessment. The green curve, denoting the quality, encap-
sulates the execution quality of the respective action. Meanwhile, the
red curve conveys the aggregated overall score, integrating difficulty
and quality considerations
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Fig. 3 Temporal Skipping problem of self-attention. This figure
presents the self-attention maps (3aand 3c, ours) alongside the seg-
mented score visualisations for each clip (3band 3d, ours). The pairs
(3a, 3b) and (3c, 3d) correspond to the same action sequences. Notably,

term AQA tasks, which extend video beyond 120 seconds,
present significantly greater challenges than short-term video
(lasting 5 to 10 seconds). This increased difficulty arises
from the heightened complexity, diversity of actions, and
the larger amount of information that must be processed.
Additionally, some datasets such as LOGO (Zhang et al.,
2023), are collected using multiple cameras, which requires
the model to have enhanced multi-view fusion capabilities to
integrate information from different perspectives while main-
taining temporal consistency effectively. Recent methods
that incorporate queries into an encoder/decoder transformer
architecture, such as those based on DETR models (Carion
et al., 2020; Zhang et al., 2021; Bai et al., 2022; Du et al.,
2023; Xu et al., 2022a), have been applied to the AQA task
because of their effectiveness in long-term modelling and
their decoder structure, which is well-suited for assigning
temporal semantic meanings to learnable queries. However,
the interpretability of these models in the context of long-
term videos remains inadequate. One reason is that as the
transformer processes each layer in long-term videos, the
decoder’s self-attention may experience a skipping effect and
lead to the temporal collapse, as highlighted in Kim et al.
(2023). The problem can be defined as Temporal Skipping
in AQA. Specifically, Temporal Skipping refers to the phe-
nomenon where, in long-term video sequences, the model
tends to bypass certain steps in the decoder’s self-attention
mechanism, instead opting for shortcuts. This occurs because
the model is influenced by the inherent temporal structure of
the data, where it identifies and prioritises key moments or
actions in the sequence most relevant to the task. However,
this can lead to skipping intermediate frames or segments
that could provide valuable context.

Figure 3 demonstrates the self-attention maps and seg-
mented scores of vanilla DETR methods compared with
our proposed method. The visualisation shows that the self-
attention pattern exhibits a Temporal Skipping issue in Fig.
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in 3a, the self-attention map is significantly affected by the Temporal
Skipping issue, whereas in 3c, our approach demonstrates strong corre-
lations between queries

3a. This leads to flattened and uniformly distributed attention
weights that stray from the diagonal in the self-attention map.
As aresult, the interpretability is compromised in Fig. 3b as
indicated by the horizontal lines, where all clips are assigned
equal weights. In contrast, the opposite results are shown
in Figs. 3c and d, where the self-attention map exhibits a
clear diagonal pattern of self-correlation in query attention.
Additionally, the segment score figure illustrates that each
clip is assigned a different score, highlighting the model’s
capability for interpretability.

1.2 Our Contributions

To address the aforementioned issues of lack of inter-
pretability from a single score, subjectivity and scoring
bias, and the challenges of long-term video sequences, we
propose several modules designed to mitigate these prob-
lems.

To solve Temporal Skipping , we introduce an Attention
Loss that enables mutual guidance between self-attention and
cross-attention maps. This is achieved by reducing their sim-
ilarity through KL divergence, ensuring that as the number
of transformer decoder layers increases, the queries within
the self-attention mechanism remain highly correlated. Addi-
tionally, adjusting the variance of the Gaussian distribution
used for Query embedding Initialization enhances the self-
attention correlation, as demonstrated by a more distinct
diagonal pattern in the self-attention map (see Fig. 3¢ and
7). Encoding positional information in queries and features
is key to preserving spatial and temporal consistency and
enhancing model interpretability. To achieve this, we intro-
duce positional encoding for learnable queries to capture
their temporal characteristics. Furthermore, we investigate
applying positional encoding to video features but find that
since the feature extractor already extracts positional infor-
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mation, the additional encoding provides further temporal
context.

Moreover, we draw inspiration from how human judges
evaluate action quality and introduce a novel Difficulty-
Qualtiy Regression Head to replace the traditional single-
score regression method to enable interpretability. This mod-
ule disentangles the DETR decoder’s output into separate
difficulty and quality branches, aligning more closely with
the scoring process used by human judges. The final action
score is derived by computing the weighted sum of individ-
ual clip scores. As illustrated in Fig. 2, our Difficulty-Qualtiy
Regression Head effectively assigns distinct difficulty and
quality to each clip.

To model the uncertainty in the judge’s scores, we
propose a simple yet effective Gaussian noise injection
module to mitigate the impact of subjectivity and human
scoring bias on the results. This module is applied to
the network’s output, helping to enhance robustness and
stability while reducing the influence of subjective vari-
ations. Specifically, this process is achieved by incorpo-
rating noise into the network output to model human
bias and enhance the network’s capacity to capture uncer-
tainty. By introducing a Gaussian Noise Injection mod-
ule, the model effectively mitigates the influence of sub-
jective variations in human scoring, promoting robust-
ness against potential biases and improving generalisa-
tion across diverse input distributions and final perfor-
mance.

In summary, our main contributions are as follows:

— We propose UIL-AQA , a Query-based Transformer
decoder network for AQA, incorporating positional
query encoding to extract clip-level features with tem-
poral semantics while also addressing the Temporal
Skipping issue, which leads to interpretability fail-
ures through an Attention Loss and a Query Initial-
ization method. The model uses a split Difficulty-
Qualtiy Regression Head to decouple the score into
difficulty and quality, enhancing the interpretability of
the model.

— We propose a Gaussian Noise Injection Module that adds
noise to the output to model and mitigate the impact of
human biases and subjectivity, enhancing the network’s
ability to handle uncertainty and ultimately improving
the final results.

— We achieve state-of-the-art performance on three long-
term AQA benchmarks, Rhythmic Gymnastics (RG),
Figure Skating Video (Fis-V), and LOng-form GrOup
(LOGO), through both quantitative and qualitative user-
based evaluations, demonstrating the effectiveness of our
proposed method.

2 Related Work
2.1 Action Quality Assessment

AQA methods can be categorised into handcrafted feature
modelling and deep learning-based methods. Early statis-
tical methods primarily relied on handcrafted features to
model action features. Pirsiavash et al. (2014) was the first to
investigate the AQA task by extracting spatiotemporal pose
features from individuals and utilising the L-SVR model
to estimate and predict action scores. Sharma et al. (2014)
utilised spatial-temporal interest points (STIP) and com-
puted the HOG (Histogram of Oriented Gradients) and HOF
(Histogram of Optical Flow) on a 3D video patch around
each detected STIP. Wnuk and Soatto (2010) utilised the
Scale-Invariant Feature Transform (SIFT) method to extract
features from videos, capturing the spatial characteristics of
actions. These extracted features were then used to train
a regression model for action quality assessment. How-
ever, handcrafted features struggle with complex and diverse
action scenarios, limiting generalisation and robustness.

The emergence of deep learning has significantly
improved AQA by enabling models to learn more robust
and adaptable feature representations. This advancement has
significantly benefited action quality assessment (AQA). Par-
mar and Morris, (2017) introduced three frameworks for
assessing the quality of Olympic event actions: C3D-SVR,
C3D-LSTM, and LSTM-SVR, leveraged 3D convolutions
(C3D) (Tran et al., 2015) and sequential modelling for AQA
networks. However, while LSTMs capture temporal depen-
dencies, it struggles with long-range relationships, and C3D,
despite its effectiveness, is computationally expensive. This
led to the introduction of self-attentive LSTMs and multi-
scale convolutional skip LSTMs Xu et al. (2019), which
aimed to balance efficiency with temporal modelling capabil-
ities. More recently, deep learning-based AQA research has
been categorised into regression-based and ranking-based
methods, where regression-based methods directly predict
quality scores. In contrast, ranking-based methods focus on
learning relative score differences between actions. Most
regression-based methods use 3D CNNs as their feature
extractor because they can extract spatial and temporal fea-
tures directly from video sequences. Models such as C3D
(Tran et al., 2015), I3D (Carreira & Zisserman, 2017) and
P3D (Qiu et al., 2017) are widely used in AQA approaches
(Xiang et al., 2018; Parmar & Tran Morris, 2019; Zhou et
al., 2022).

Transformer-based architectures, such as VST (Liu et al.,
2022b) and Vivit (Arnab et al., 2021), have demonstrated
superior performance in long-term video modelling by cap-
turing extended dependencies across frames. Unlike CNNs
or LSTMs, transformers excel at learning hierarchical rep-
resentations, making them well-suited for AQA. Studies
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(Xu et al., 2022a) have shown that these architectures out-
perform traditional CNN-LSTM approaches in AQA tasks,
particularly in long-form assessments. As for ranking-based
methods, Doughty et al. (2019) introduced a rank-aware
loss function and trained it alongside a temporal attention
module. However, they only provide overall rankings, lim-
iting their applicability in AQA tasks requiring quantitative
comparison. Yu et al. (2021) improved it and presented a
group-aware regression tree (CoRe) method, which predicts
relative scores while referencing others’ performances. Xu
et al. (2024) proposed FineParser, which can extract the fine-
grained human-centric foreground action representations and
achieve state-of-the-art results given a pair of query and
exemplar videos. Zhou et al. (2024) proposed a coarse-to-fine
alignment strategy that captures local-to-global consistency
between predicted scores and instructional guidance. Zeng
and Zheng (2024) proposed an adaptive multimodal fusion
strategy that progressively integrates heterogeneous features,
further demonstrating the effectiveness of multimodal learn-
ing in AQA tasks.

More recently, several novel works have further extended
the scope of AQA. Xu et al. (2025a) introduces a language-
guided audio-visual learning framework MLAVL, for long-
term sports assessment, effectively modelling the correlation
between actions and music to improve scoring accuracy. Xu
et al. (2025b) extended AQA into the domain of group dance
assessment by addressing the challenges of pose estimation
errors in multi-person settings, enabling the evaluation of
dance neatness and synchronisation. Chen et al. (2024) intro-
duced a novel benchmark and methodology for assessing the
quality of Al-generated videos, highlighting the importance
of evaluating both natural human actions and synthetic con-
tent.

Uncertainty

Some studies have aimed to tackle the uncertainty issue
in AQA. Tang et al. (2020) introduced the Uncertainty Score
Distribution Learning (USDL) method to improve action
quality representation by treating each action as an instance
linked to a score distribution, thereby mitigating the effects
of inherent label ambiguity. UD-AQA Zhou et al. (2022)
proposed a CVAE-based uncertainty modelling framework
to capture the subjectivity in human judgment. It learns
latent score distributions via a posterior and prior network,
aligned through KL divergence, and uses an uncertainty-
aware reweighting strategy to suppress ambiguous samples
during training. One drawback of CVAE-based uncertainty
modelling is its susceptibility to posterior collapse and
training instability, especially under limited data condi-
tions common in AQA tasks. LUSD-Net Ji et al. (2023)
adopts uncertainty-aware modelling to improve the reliabil-
ity of AQA under subjective scoring conditions. Inspired by
Kendall and Gal, (2017), it models aleatoric uncertainty by
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learning input-dependent variance through heteroscedastic
regression. This approach allows the model to quantify pre-
diction confidence and reduce the influence of noisy labels.
While effective for capturing data-level ambiguity, it does
not account for epistemic uncertainty, which may arise from
limited or unfamiliar training data.

Interpretability The above AQA methods focus on single-
score regression, which lacks clip-level temporal semantic
representations. Thus, research on AQA interpretability
Roditakis et al. (2021) introduced a self-supervised train-
ing technique and a differential cycle consistency loss to
enhance temporal alignment and interpretability. Similarly,
Farabi et al. (2022) argued that simply averaging clip-level
features fails to capture their relative importance, propos-
ing a weighted-averaging technique instead. While these
approaches emphasise clip-level semantics, they do not align
with the real-world scoring logic of human judges. In con-
trast, our method decouples clip-level features into difficulty
and quality, further improving AQA interpretability. Sim-
ilar to our goal of enhancing fine-grained interpretability
through stage-wise scoring, Li et al. (2023) proposed a
pseudo-subscore learning (PSL) framework for substage
modelling without requiring subscore annotations. However,
their method is only tested on the UNLV-Diving dataset,
where actions follow a fixed temporal structure. In con-
trast, complex sports involve diverse and non-deterministic
action flows, posing greater challenges for substage mod-
elling and alignment due to long durations and multi-view
dynamics. Han et al. (2025) introduces FineCausal: a causal-
based framework that models stage-level feature—score rela-
tionships, enhancing interpretability and achieving strong
performance in fine-grained AQA. However, its reliance on
expert priors for causal graph construction may introduce
additional annotation and modelling costs.

In recent years, with the rapid advancement of language
models in understanding and generating natural language,
there has been a growing interest in integrating language-
based descriptions into action quality assessment tasks.
Zhang et al. (2024b) proposed a new task, Narrative Action
Evaluation (NAE), which shifts the focus from scalar regres-
sion to generating expert-style narrative feedback condi-
tioned on video content and coarse scores. NAE enables a
more interpretable and human-aligned evaluation by produc-
ing natural language explanations that resemble how judges
justify their decisions. Okamoto and Parmar (2024) proposes
ahierarchical neuro-symbolic framework that combines Plat-
form Abstraction, Pose Estimation, and Splash Abstraction
to perform structured and fine-grained evaluation of action
executions, ultimately generating interpretable, stage-aware
textual and visual reports. To move beyond score regression
of AQA, several works have begun exploring descriptive and
actionable feedback to improve interpretability. ExpertAF



International Journal of Computer Vision (2026) 134:24

Page70f23 24

Ashutosh et al. (2025) introduces a multimodal coaching
framework that generates actionable natural language feed-
back. TechCoach Li et al. (2025) presents a keypoint-aware
coaching system that analyses the quality of individual
body parts and produces fine-grained, interpretable textual
feedback. While both ExpertAF and TechCoach aim to
enhance interpretability and provide natural language feed-
back beyond scalar scores, they differ in focus: ExpertAF
emphasises actionable coaching by providing both commen-
tary and visual demonstrations, whereas TechCoach focuses
on technical-point-aware reasoning, offering fine-grained
explanations grounded in body part performance.

2.2 DETR in Video Understanding

With the rise of transformer-based architectures, researchers
have explored DETR-style models for video understanding
and AQA tasks due to their temporal reasoning capabil-
ity by leveraging learnable queries effectively. DEtection
TRansformer (DETR) was initially proposed by Carion et al.
(2020), leveraging a transformer-based architecture to model
complex relationships and dependencies in data through
learnable queries. DETR has been extended to video under-
standing tasks such as object detection, tracking, and action
recognition due to its remarkable ability in temporal mod-
elling. For example, Liu et al. (2022a) introduced a method
that applied Deformable DETR (Zhu et al., 2021) to tempo-
ral action detection (TAR), effectively removing the need for
a proposal generation stage. Moon et al. (2023) proposed a
Query-Dependent DETR (QD-DETR) for moment retrieval
and highlight detection (MR/HD) tasks, which explicitly
inject the context of the text query into the video representa-
tion. Kim et al. (2023) was the first to identify the temporal
collapse problem in temporal action detection when using a
DETR-like structure and introduced a self-feedback method
to mitigate it. Temporal Collapse refers to the degradation of
temporal representations in sequence modelling, where the
model fails to capture long-term dependencies, causing fea-
ture redundancy and misalignment in tasks. Similarly, our
work tackles temporal collapse within the AQA task but
instead focuses on modifying the decoder’s self-attention and
cross-attention maps representation. Zhang et al. (2021) pro-
posed a Temporal Query Network for fine-grained action
classification on untrimmed video, which uses a query-
response mechanism to regard each action clip in a video as
a query. Regarding AQA tasks, Bai et al. (2022) proposed
a Temporal Parsing Network (TPN) based on the DETR
decoder for decomposing global features into temporal lev-
els, which allows the network to parse temporal semantic
meanings for enhanced action quality assessment. However,
TPN only evaluated short-term datasets, which lacked long-
term video modelling capabilities. Our network is based on
DETR and incorporates a query initialization module and

attention loss on self-attention and cross-attention to prevent
from Temporal Skipping .

2.3 Long-Term Video Understanding

Unlike short-term AQA, where actions occur in a compact
time frame (5- 10s), long-term video understanding requires
capturing sparsely distributed action cues over extended
durations. This introduces challenges in maintaining tempo-
ral consistency, preventing feature redundancy, and ensuring
accurate segmentation of meaningful events. Early stud-
ies (Li et al., 2019a; Gao et al., 2017; Srivastava et al.,
2016) employed RNNs and LSTMs for long-term video
modelling. More recently, numerous works have shifted
towards transformers, leveraging their effectiveness in cap-
turing long-range dependencies in video modelling (Wang
et al., 2021b; Wu et al., 2022; Arnab et al., 2021; Liu et al.,
2022b). This transition has benefited various video under-
standing tasks, such as temporal action detection (Zhang et
al., 2022), video large language models (Song et al., 2024;
Ren et al., 2023), dense video captioning (Yang et al., 2023;
Wang et al., 2021c), etc. In the AQA task, early research pri-
marily focused on short-term videos, typically lasting 5-10
seconds (Parmar & Tran Morris, 2019; Parmar & Morris,
2019). However, this is insufficient for real-world scenar-
ios, where actions often span longer durations and involve
complex temporal dependencies. Recent works have intro-
duced long-term action quality assessment (AQA) datasets
and methods, including LOGO (Zhang et al., 2023), Rhyth-
mic Gymnastic (RG) (Zeng et al., 2020) and Figure Skating
Video (Fis-V) (Xu et al., 2019). Furthermore, Zeng et al.
(2020) proposed ACTION-NET, which employs a GCN
with a context-aware attention module for temporal feature
modelling. However, ACTION-NET demonstrated subop-
timal performance on long-term datasets. To address this,
Xu et al. (2022a) improved upon prior work by incorporat-
ing learnable queries as grade prototypes and introducing a
Likert Scoring Module for grade decoupling in long-term
video assessment. Skating-Mixer (Xia et al., 2023) proposed
an MLP-based framework for long-term audio-visual mod-
elling in sports assessment, capturing correlations between
motion and music for more accurate performance evalu-
ation. More recently, QGVL (Xu et al., 2025¢) has been
proposed for long-term AQA, which leverages cross-modal
alignment between video content and quality-related textual
cues to enhance temporal modelling. In addition, PHI (Zhou
et al., 2025) introduced a progressive instruction mecha-
nism to bridge domain shifts in long-term AQA, improving
adaptability across diverse datasets. In contrast to these
approaches, our previous work (Dong et al., 2024) proposed
a Transformer-based architecture well-suited for long-term
video modelling, directly addressing the interpretability gap
in long-term AQA. In this paper, we further enhance our
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Fig. 4 The overall architecture of UIL-AQA is illustrated as above.
The input video is segmented into multiple clips and processed by a
feature extractor. A temporal decoder utilises query-initialised learn-
able positionally encoded queries to transform clip-level features into
temporal representations. The difficulty-quality regression head com-
putes the final score to ensure interpretability by taking the product of
each clip’s difficulty and quality. Additionally, a Gaussian noise injec-
tion module is applied before computing the loss function to mitigate

previous work by introducing an uncertainty-aware module
to mitigate subjectivity and human biases, thereby further
improving the final results, interpretability, and robustness.

3 Methodology

To achieve an accurate and interpretable action quality
assessment model that can also model the judge’s uncertainty,
we proposed our network UIL-AQA as illustrated in Fig.
4, which has three key modules. Before the backbone fea-
ture extractor is processed, our long-term input video is split
into equal-sized clips. A backbone feature extractor then pro-
cesses the input video and extracts clip-level features. Next, a
Temporal Decoder captures attention relationships between
these features and a set of learnable position-encoded queries
initialised by our proposed query Initialization module to
model temporal semantic representations using a transformer
decoder structure. The backbone extracts spatial and short-
term temporal features, while the transformer-based decoder
learns long-range dependencies and high-level temporal rep-
resentations, improving sequence modelling. The extracted
clip features are then passed to a Difficulty-Qualtiy Regres-
sion Head , which separately predicts the difficulty and
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Difficulty-Quality Regression Head

the impact of subjectivity and human biases. By minimising the simi-
larity between the self-attention and cross-attention maps, along with
an optimised query Initialization strategy, our approach effectively mit-
igates the temporal collapse issue commonly observed in long-term
video sequences, enhancing human interpretability. Furthermore, our
Gaussian Noise Injection Mean Square Error Loss can minimise the
uncertainty and improve robustness and final performance

quality for each action clip. Before computing the loss func-
tion, the network output is processed through a Gaussian
Noise Injection Module to add noise, simulating human
biases. The final action score is computed by weighting each
clip’s score and summing the results. The network is trained
using two loss functions: Attention Loss (Lossgss), which
minimises the KL divergence between attention maps at each
layer, and Regression Loss (Lossyeg), which measures the
Gaussian noise injection mean squared error.

3.1 Feature Extractor

To extract the sequence or clip features from the input video
V. we divide the video into L non- overlapping clips, each
containing M consecutive frames, V = {F ’}l_l We use two
common feature extractors, Inflated 3D ConvNet (I3D) (Car-
reira & Zisserman, 2017) and Video Swin Transformer (VST)
(Liu et al., 2022b, 2021) as our Feature Extractor . 13D is a
3D convolutional network designed to model spatiotemporal
relationships in video using inflated 3D convolutions, where
2D convolutional filters are expanded into 3D by adding a
temporal dimension. It processes video clips by applying 3D
convolutions and 3D max pooling to learn motion patterns,
followed by an Inception-based multi-scale feature extrac-
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Fig.5 Detailed structure of our Temporal Decoding Module and Query
Initialization Module

tion module (Szegedy et al., 2015), and ends with global
average pooling and a classification head. VST (Video Swin
Transformer) is a transformer-based video model designed
to capture spatiotemporal relationships using shifted window
self-attention, which computes attention locally within non-
overlapping spatial windows while enabling cross-window
communication through a shifting mechanism. It processes
video clips by applying hierarchical patch embedding and
window-based multi-head self-attention to extract spatial
features efficiently, followed by temporal window attention,
which extends self-attention across frames to model motion
dynamics. The extracted features are progressively down-
sampled through patch merging layers, enabling multi-scale
representation learning, and finally passed through a clas-
sification head. The Feature Extractor network, including
I3D and VST as the feature extractors, are pre-trained on
the Kinetics dataset and are frozen during training. The fea-
tures obtained from L clips are denoted as f' iLzl , where each
fleRe.

3.2 Temporal Decoder

Once clip-level features f iiLzl are extracted, the next step
is to model temporal dependencies across these clips. We
use a transformer-based decoder inspired by DETR (Car-
ion et al., 2020) to achieve this, as shown in Fig. 5. DETR
is an end-to-end image object detection framework that
utilises a transformer structure to extract global image fea-
tures and learnable queries that interact with these features

via cross-attention to predict object classes and bounding
boxes directly. It offers a simplified, end-to-end approach,
allowing it to capture complex relationships between objects
in an image. Where learnable queries interact with clip-level
video features through cross-attention, adaptively aggregat-
ing information instead of uniformly processing all clips
while simultaneously capturing long-range temporal depen-
dencies. Unlike vanilla DETR, which includes both an
encoder and a decoder, our model uses only a decoder.
Prior research (Bai et al., 2022) indicates that an encoder
can reduce efficiency without adding significant benefits.
This may be due to two factors. First, the pre-trained fea-
ture extractor (e.g., I3D or VST) has already extracted
high-dimensional spatiotemporal features, which inherently
capture local motion patterns and short-term dependencies;
an additional encoder may introduce redundant information.
Second, the aggregation of clip-level features can lead to
excessive smoothing of the temporal representation, weak-
ening the information at the critical query and thus causing
the Temporal Skipping issue. The decoder consists of lay-
ers incorporating self-attention for handling query inputs and
cross-attention, enabling queries to interact with encoded clip
features. Itis designed with two layers, as increasing the num-
ber of layers negatively impacts Temporal Skipping . With the
decoder capturing temporal dependencies, the next step is to
compute the final action score. Instead of a simple regression,
we introduce a Difficulty-Quality Regression Head that bet-
ter aligns with human scoring principles. The encoded clip

features f! iL:1 are extracted from Feature Extractor , while a
set of learnable queries is employed. The model is designed to
associate each query with a specific clip and its correspond-
ing clip features. The cross-attention mechanism is trained
to associate each action query with the memory by com-
puting attention scores between the query features and all
memory features. This process enables the model to identify
and concentrate on the spatial and temporal information most
relevant to each query.

Generally, the queries are initialised with a Gaussian
distribution (variance = 1). However, this can weaken cor-
relations in self-attention, reducing temporal coherence. In
our query Initialization module, we adjust this variance to
ensure stronger query interactions, improving video consis-
tency. Additionally, while vanilla DETR employs sin or cos
positional encodings for queries and memory to encode rela-
tional position information, our decoder utilises only query
positional encoding. This design choice removes reliance on
complex positional encodings or prior knowledge, such as
temporal features extracted from the feature extractor. The
detailed experiments for this part will be analysed and vali-
dated in Sect.4.
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3.3 Difficulty-Quality Regression Head

Our method essentially addresses a weakly-supervised dis-
entanglement problem of difficulty and quality. As shown
by Locatello et al. (2019), unsupervised disentanglement
without structural assumptions is theoretically impossible.
Without introducing inductive biases or supervision, the fac-
torisation learned by the model cannot be guaranteed to align
with meaningful semantic concepts. In practice, the final
score of an action video often results from multiple semantic
factors: for example, artistic swimming emphasises aesthetic
appeal and team coordination, figure skating focuses on flu-
idity and smooth transitions, while gymnastics highlights
difficulty execution and technical precision. However, across
different actions, acommon principle in scoring lies in a com-
bination of difficulty and execution quality.

Therefore, in our method, we explicitly hypothesise that
action quality depends on two latent components—difficulty
and execution quality—and design the model accordingly to
guide the decoupling process. Therefore, we propose the fol-
lowing assumption: Assumption: The overall video score y
is formulated as a weighted sum of per-clip difficulty and
quality, under the assumption that both dimensions jointly
contribute to long-term AQA performance.

Based on this assumption, we design a transferable and
data-agnostic Difficulty-Qualtiy Regression Head module
that separates the difficulty and quality of each action clip.
This is implemented through two parallel regression heads,
a difficulty head and a quality head, designed as MLP lay-
ers. The difficulty head applies a softmax function to ensure
that the sum of all clips’ weights equals 1, representing each
clip’s relative contribution to the final score. The final qual-
ity score Q is computed as the weighted sum of each clip’s
quality, where the difficulty score D is assigned by the diffi-
culty head, as defined in Eq. 1, with L representing the total
number of clips.

L
3= Di-Q (1)
=1
3.4 Temporal Skipping

Ideally, the difficulty score D and quality score Q should vary
across different clips, reflecting the differences in action dif-
ficulty and execution quality. However, without constraint,
the model tends to skip the self-attention module after sev-
eral training epochs. Creating the attention map as shown
in Fig. 3a, which shows a horizontally uniform distribution
rather than a diagonal pattern. The attention map should high-
light temporal dependencies by focusing more on relevant
clips. As a result, the correlation between queries dimin-
ishes, leading to each query receiving a similar weight in the
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self-attention mechanism. This meant that the difficulty and
quality for each clip in a video tended to be averaged to a sin-
gle score, as shown in Fig. 3b, which is unreasonable. This
phenomenon we termed Temporal Skipping , which leads
to the collapse of meaningful temporal interactions, reduc-
ing interpretability. Our proposed Attention Loss and Query
Initialization Module explicitly mitigate this issue, ensuring
each clip retains its unique temporal contribution.

Attention Loss To solve the Temporal Skipping , we intro-
duce the Attention Loss Loss,;:. We define an Attention
Loss function to ensure consistency between self-attention
and cross-attention. We first compute self-attention maps L g
and cross-attention maps L ¢ by applying a softmax function
to their respective attention matrices as shown in Egs. 2 and 3
where Ag is the output of self-attention module, and A; is its
transpose, and Ac represents the output of cross-attention,
while Al is its transpose.

Ls = softmax(AsAl) 2)
Lc = softmax(AcAZ) 3)

We then minimize the KL divergence between these maps
across all decoder layers. The formal definition of Attention
Loss Lossgs is formulated as Eq. 4, where Dk repre-
sents the Kullback-Leibler (KL) divergence, and N indicates
the number of decoder layers in the Temporal Decoder .
Attention Loss enforces consistency between self-attention
and cross-attention across decoder layers. This prevents the
model from disregarding temporal dependencies and helps
retain fine-grained motion details, helping to alleviate Tem-
poral Skipping and improving the interpretability of the
model.

N
Lossay = Y _ Dxr(L§|IL:) )

n=1
3.5 Gaussian Noise Injection

Subjective variations often influence AQA scores in human
judgment, and our Gaussian Noise Injection module coun-
teracts this by introducing controlled randomness during
training, improving model robustness, and reducing over-
fitting to specific scoring biases. This prevents overfitting
and ensures stable predictions across varied input condi-
tions. This module introduces random perturbations during
training, enhancing the model’s robustness to varying input
conditions and effectively reducing instability caused by
data noise or subjective scoring. Specifically, during network
training, we inject noise into the model’s output score using
a Gaussian noise mechanism, where a Gaussian noise term
withmean ;2 = 0 and adjustable variance o> = 0.05 is added
to the predicted score, as shown in Eq. 5 where y represents
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Table 1 Comparison of widely used AQA datasets, including publication year, modality, number of classes, sample size, and frame length.

underlined denotes the long-term datasets used in our paper

Datasets Year Modality #Class #Sample #Average Frames

MIT Olympic(Pirsiavash et al., 2014) 2014 Video & Skeleton 2 309 Dive:150, Figure Skate:4200
MTL-AQA(Parmar & Tran Morris, 2019) 2019 Video 16 1412 96

FineDiving(Xu et al., 2022b) 2022 Video 52 3000 105

Fis-V(Xu et al., 2019) 2020 Video 1 500 4300 (Long-term)
RG(Zeng et al., 2020) 2020 Video 1 250 2375 (Long-term)
LOGO(Zhang et al., 2023) 2023 Video 12 200 5100 (Long-term)

the model’s original prediction before noise injection, and €
is the added Gaussian noise.

y=9+e e~Nu, od), (5)

3.6 Overall Training Loss

The overall training loss is made up of two terms, Atten-
tion Loss Loss,; and Gaussian Noise Injection Mean Square
Error Loss Loss;e,, where we improve upon previous AQA
research (Yu et al., 2021; Wang et al., 2021a; Zhang et
al., 2023; Xu et al., 2022a) by enhancing the vanilla Mean
Square Error Loss (MSE Loss) approach with Gaussian
Noise Injection. Gaussian Noise Injection Mean Square Error
Loss minimizes the difference between the noise-injected
regressed score and human judge scores as formulated in Eq.
6, where y is the predicted value and y is the ground truth
value. The overall training loss function is then defined in Eq.
7, where Areg and A4, represent the constant assigned to the
MSE loss and attention loss, respectively. The loss function
demonstrates robustness to the selection of constant values,
and they are generally kept the same.

1 — )
LoSSreq = - Z(yi —5)? (6)
i=l1

Lossg = )‘«regLossreg + Aart LOSSast N

In summary, our proposed UIL-AQA framework introduces
three key innovations: (1) a DETR-inspired transformer
decoder tailored for AQA, (2) an interpretable Difficulty-
Quality Regression Head for human-aligned scoring, and (3)
Attention Loss, Query Initialization Module and Gaussian
Noise Injection to mitigate Temporal Skipping and to model
judge uncertainty and improve robustness. Together, these
innovations enhance the accuracy, robustness, and inter-
pretability of AQA, making it more suitable for complex,
long-term video analysis.

4 Experiment
4.1 Datasets

To evaluate the effectiveness of our proposed model, we
conduct experiments on three widely used long-term AQA
benchmarks: Rhythmic Gymnastics (RG) (Zeng et al., 2020),
LOng-form GrOup (LOGO) (Zhang et al., 2023), and Figure
Skating Video (Fis-V) (Xu et al., 2019) as shown in Table
1. Compared to short-term video datasets, long-term video
presents more significant challenges due to extended tem-
poral dependencies, complex action sequences and sparse
features.

Rhythmic Gymnastics (RG). (Zeng et al., 2020) The RG
dataset is collected from high-standard international com-
petition videos, including footage from Artistic Gymnastics
Competitions. The dataset includes video sequences of four
gymnastics routines: ball, clubs, hoop, and ribbon. Each
action category consists of 200 training and 50 evaluation
samples, each lasting approximately 1 minute and 35 sec-
onds. Each sample is assigned three scores: a difficulty score,
an execution score, and a total score, given by the referee fol-
lowing the official scoring system. In our paper, each category
is trained as an individual model, following the methodology
outlined in (Zeng et al., 2020; Xu et al., 2022a).

Figure Skating Video (Fis-V).(Xu et al., 2019) The Fis-V
dataset was collected from official high-standard interna-
tional skating competitions. The dataset contains 500 figure
skating videos, each averaging 2 minutes and 50 seconds
in length. Following prior work, we use the same train/test
split with 400 videos for training and 100 for testing. Fis-V
includes two types of labels: Total Element Scores (TES) and
Total Program Component Scores (PCS). TES represents the
score calculation method for an athlete’s technical elements
during the competition. PCS represents artistic performance
and program composition quality, evaluating a skater’s skat-
ing skills, musical expression, choreography, and overall
presentation. Two models are trained to predict these scores,
each focusing on one category.
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LOng-form GrOup (LOGO).(Zhang et al., 2023) LOGO is a
multi-person, long-term video dataset featuring frame-wise
annotations for action procedures and formations designed
for artistic swimming scenarios. The LOGO dataset com-
prises 150 training samples and 50 testing samples. Each
video sequence lasts approximately 3 minutes and 30 sec-
onds. To our knowledge, LOGO features the most extended
video durations among existing AQA datasets. The long-term
and multi-person nature of the LOGO dataset introduces sig-
nificant challenges for AQA.

4.1.1 Dataset Selection

These datasets exhibit diverse and complementary character-
istics, collectively forming a representative and challenging
benchmark for AQA. Below, we summarise their key differ-
ences and the motivations behind their selection:

— Action diversity: The three datasets collectively span a
wide range of movement types, including aquatic (e.g.,
diving), terrestrial (e.g., gymnastics), individual, and
group performances. This helps evaluate the model’s abil-
ity to generalise across different action categories.

— Viewpoint and scene complexity: LOGO is a typical
multi-person action dataset featuring multi-camera views
and higher visual complexity, whereas RG and Fis-V con-
sist of single-person performances captured from fixed
viewpoints. This setup allows us to evaluate the model’s
robustness under varying spatial structures and observa-
tion conditions.

— Temporal range: Clip lengths range from 2,375 to
5,100 frames, with LOGO providing long sequences and
RG/Fis-V offering medium-length clips. This variation
helps examine the model’s performance across different
temporal modelling scales.

— Scoring schemes: The datasets employ different evalu-
ation protocols—RG focuses on execution quality, Fis-V
incorporates both technical and artistic components, and
LOGO uses a composite score that includes group coor-
dination. This allows us to assess whether the model can
adapt to task-relevant scoring nuances and fine-grained
distinctions.

— Uniqueness: To the best of our knowledge, these are the
only publicly available long-form AQA datasets, making
them essential and representative resources for evaluating
long-sequence quality prediction models.

4.2 Evaluation Metrics
To maintain consistency with prior research (Doughty et al.,
2019; Yu et al., 2021; Roditakis et al., 2021; Farabi et al.,

2022; Zhang et al., 2021; Xu et al., 2025a), we adopt three
widely used evaluation metrics: Spearman’s rank correlation
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(SRCC), Relative L2 distance (R-£2), and Mean Squared
Error (MSE). These metrics respectively assess the ranking
consistency, normalized prediction error, and absolute pre-
diction error of the proposed model.

Spearman’s Rank Correlation (SRCC) measures the corre-
lation between the predicted and ground truth scores, ranging
from -1 to 1. SRCC reflects how well the model preserves
the relative ranking of actions rather than their absolute val-
ues. The reason for using SRCC is that many scoring tasks,
such as figure skating, diving, and gymnastics, involve a
certain degree of subjectivity. Different judges may assign
varying scores, but the overall ranking trend should remain
consistent, which better aligns with the judging practices in
real-world competitions. A higher SRCC indicates a more
substantial agreement between the predicted rankings and
human-assigned scores, as shown in Eq. 8.

>i(pi — P)ai —q)
i = P - 7

p= ®)

In contrast, Relative L2 Distance (R-£2) quantifies the nor-
malised discrepancy between the predicted and ground truth
scores. This metric evaluates the absolute Euclidean distance
while accounting for variations in score distribution, provid-
ing a robust measure of prediction accuracy. Lower values
indicate better similarity, as described in Eq. 9.

R-62 = Z( bl ©)

ymax ymln

In addition, we also report the Mean Squared Error (MSE),
which measures the average squared difference between the
predicted and ground truth scores. Unlike R-£2, MSE does
not apply normalisation by score range, making it directly
reflect the absolute prediction error. Lower values indicate
better accuracy, as shown in Eq. 10.

N
1 .
MSE = — ;(yn — 3n)? (10)

4.3 Implementation Details

We adopt Inflated 3D ConvNet (I3D) (Carreira & Zisser-
man, 2017), and Video Swin Transformer (VST) (Liu et al.,
2022b, 2021) pretrained on Kinetics as video feature extrac-
tors. It is important to note that we only use the pretrained
Feature Extractor for feature extraction and do not train it.
For the RG, FIS-V, and LOGO tasks, the clip and query sizes
are set to 68, 136, and 48, respectively. These parameters are
determined based on video length and extensive comparative
experiments demonstrating optimal performance. We adopt
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Table 3 Comparison of Spearman’s rank correlation coefficient
(SRCC, higher is better) and Mean Squared Error (MSE, lower is bet-
ter) performance on the Figure Skating Video (Fis-V) dataset. “Avg.”

denotes the average score across all subclasses (TES and PCS). The
best results are highlighted in bold, while the second-best results are
underlined. Missing results are denoted by “-”

Methods Feature Extractor Fis-V (SRCC?) Fis-V (MSE|)
TES PCS Avg. TES PCS Avg.
SVR (Parmar and Morris, , 2017) C3D 0.400 0.590 0.501 — — —
MS-LSTM (Xu et al., 2019) VST 0.660 0.809 0.744 — — —
ACTION-NET (Zeng et al., 2020) VST+ResNet 0.694 0.809 0.757 - - —
CoRe (Yu et al., 2021) VST 0.660 0.820 0.751 23.50 9.25 16.38
GDLT (Xu et al., 2022a) VST 0.685 0.820 0.761 20.99 8.75 14.87
MLP-Mixer (Xia et al., 2023) VST 0.680 0.820 0.759 19.57 7.96 13.77
T2CR (Ke et al., 2024) 13D 0.809 0.702 0.761 - — —
SGN (Du et al., 2024) VST 0.700 0.830 0.773 19.05 7.96 13.51
CoFInAl (Zhou et al., 2024) VST 0.716 0.843 0.780 20.76 7.91 14.34
Inter-AQA (Dong et al., 2024) VST 0.717 0.858 0.788 26.97 10.89 18.93
Ours VST 0.721 0.862 0.792 20.22 8.56 14.39
Izzg:ﬁszirEZFEZHE% GO Methods Feature Extractor
dataset using feature extractors 13D VST
including I3D (Carreira & SRCC 1 R-€2 | SRCC 1 R-£2 )
Zisserman, 2017) and VST (Liu
et al., 2022b). A higher SRCC USDL (Tang et al., 2020) 0.426 5.736 0.473 5.076
and a lower R-€2 indicate better  ope (yy et al., 2021) 0.471 5.402 0.500 5.960
performance. The highest results
are highlighted in bold, while TSA (Xu et al., 2022b) 0.452 5.533 0.475 4.778
the second-highest results are ACTION-NET (Zeng et al., 2020) 0.306 5.858 0.410 5.569
marked with an underline. USDL-GOAT (Zhang et al., 2023) 0.462 4.874 0.535 5.022
TSA-GOAT (Zhang et al., 2023) 0.486 5.394 0.484 5.409
CoRe-GOAT (Zhang et al., 2023) 0.494 5.072 0.560 4.763
CoFInAl (Zhou et al., 2024) — — 0.698 4.019
Inter-AQA (Dong et al., 2024) 0.593 1.220 0.780 1.745
Ours 0.625 4.107 0.796 3.084

acomplementary perspective by directly measuring the abso-
lute prediction error. Our method achieves consistently lower
MSE across most sub-classes and the averaged score, further
demonstrating the robustness of our approach.

On the Figure Skating Video (Fis-V) dataset, as shown in
Table 3, our model outperforms our previous model Inter-
AQA (Dong et al., 2024) by 0.5%. Compared to the prior
state-of-the-art method CoFInAl Zhou et al. (2024), the
results demonstrate improvements of 0.5% and 1.9% on
the TES and PCS labels, respectively, achieving an aver-
age enhancement of 1.2% on SRCC. On the Fis-V dataset,
we also report the MSE results. The results show that our
method achieves comparable performance on TES, PCS, and
the averaged scores, further indicating that the improvements
in SRCC are not achieved at the expense of higher prediction
errors.
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For the LOGO dataset, as shown in Table 4, our model
achieves state-of-the-art results, surpassing our previous
work (Dong et al., 2024) by 2.1% and outperforming the
previous state-of-the-art method by 26.5% when using 13D
as the feature extractor. Furthermore, with VST as the feature
extractor, our model exceeds our previous method by 2% and
outperforms the previous state-of-the-art method by 14%.
This strong performance validates our UIL-AQA framework
and suggests its applicability to broader action quality assess-
ment scenarios. For the LOGO dataset, as shown in Table 4,
our model achieves state-of-the-art SRCC results, surpassing
our previous work (Dong et al., 2024) by 2.1% and outper-
forming the previous state-of-the-art method by 26.5% when
using I3D as the feature extractor. Furthermore, with VST as
the feature extractor, our model exceeds our previous method
by 2% and outperforms the previous state-of-the-art method
by 14%. This strong performance validates our UIL-AQA
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Table 5 Ablation study on the

Module #Attention Loss #Query PE #Query Initialization #Noise Injection SRCC ¢
average performance of four
labels in .the Rhythmic Baseline < « « < 0.628
Gymnastics (RG) dataset across
various modules v X X X 0.807
v v X X 0.810
v v v X 0.842
Ours v v v v 0.858

framework and suggests its applicability to broader action
quality assessment scenarios. We also observe that SRCC
exhibits adifferent trend from R-£2 in Table 4. This is because
SRCC reflects the monotonic consistency between predicted
and ground-truth scores, while R-£2 penalises absolute devi-
ations. As a result, some methods may achieve lower R-£2 if
their predictions align more closely with the absolute scale
of the data, even if the relative ordering is less reliable. In
contrast, SRCC highlights improvements in ranking qual-
ity, where our approach demonstrates consistent advantages,
both in Table 4 and previously in Tables 2 and 3.

4.4.1 Ablation Study

Experiments were conducted in four different settings to eval-
uate the impact of attention loss, query positional encoding,
query initialization and Gaussian noise injection on model
performance. Our ablation study in Table 5 reveals that atten-
tion loss alone contributes a significant 28.5% improvement
in SRCC, highlighting the impact of mitigating temporal
skipping. Adding query positional encoding further refines
long-term dependencies, while Gaussian noise injection sta-
bilises predictions against subjective scoring biases. With
the baseline approach of a vanilla DETR decoder without
incorporating any of the other proposed modules, the SRCC
of the model was 0.628. The introduction of attention loss
resulted in a significant performance improvement, boosting
the SRCC to 0.807 (28.5%), which demonstrates the effec-
tiveness of our proposed attention loss in enhancing both
interpretability and the overall SRCC results. Adding query
positional encoding alone further improved the results, bring-
ing the SRCC to 0.810. Furthermore, including the query
initialization module provided an additional performance
boost of approximately 4%. This enhancement suggests that
utilising high variance in the initialization process promotes
greater diversity and dispersion of query vectors, improving
the model’s overall performance. Lastly, our proposed noise
injection module slightly enhanced the final results by 2%
while eliminating the influence of subjectivity and uncer-
tainty, ensuring that the outcomes were more consistent and
reliable. In summary, each module contributes to the overall
performance improvement of the model. Attention loss plays
acrucial role in mitigating the temporal skipping issue, while

Table 6 Detailed Ablation study on the individual SRCC performance
of four labels in the Rhythmic Gymnastics (RG) dataset across various
modules
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query initialization and noise injection respectively enhance
long-term dependency modelling and prediction robustness.
More detailed ablation study results can be found in Table 6.

4.4.2 Ablation Study of Gaussian Noise Injection

We compare the performance of various uncertainty-aware
modules in AQA with our proposed Gaussian noise injec-
tion strategy. As shown in Table 7, our simple yet effective
approach achieves better performance across correlation-
based metrics SRCC, demonstrating its ability to model
subjective uncertainty in action quality assessment.
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Table 7 Comparison of different uncertainty modelling modules adapted to our network on LOGO dataset. We evaluate performance using SRCC

and RI-2. Best results are shown in bold

Model Uncertainty Module SRCC RI-2
LUSD-NET (Kendall and Gal, (2017); Ji et al. (2023)) Aleatoric uncertainty modelling 0.738 1.130
MUSDL (Tang et al. (2020)) Distribution learning 0.709 2.840
UD-AQA (Zhou et al. (2022)) CVAE based Module 0.754 11.055
Ours Gaussian noise injection 0.796 3.084

Table 8 Effect of Positional Encoding on RG dataset, where SRCC
results take the average of the four labels

Methods Query Memory SRCC
Baseline X X 0.783
X v 0.751
v v 0.629
Ours v X 0.858

4.4.3 Effect of Position Encoding

We compare different positional encoding methods in the
Temporal Decoder in Table 8. Positional encoding is used
to incorporate spatial and sequential information into the
transformer architecture, enabling the model to distinguish
between different positions in the input clips. In our study,
we compare the effects of applying positional encoding at
different locations, including transformer query and mem-
ory.

We observe that using only query positional encoding
outperforms all other approaches, while combining query
and memory positional encoding negatively impacts perfor-
mance. This behaviour can be attributed to our main focus
in the AQA task, modelling learnable queries through the
DETR decoder and assigning temporal semantic meanings
to these queries within the decoder structure. Since the Fea-
ture Extractor has already extracted the temporal information
in the memory, incorporating memory positional encoding
introduces unnecessary computations and potential redun-
dancy. We streamline the process by utilising only the query
positional encoding, avoiding this redundancy. This strat-
egy allows the queries to capture and represent key action
quality indicators within the video more effectively, ulti-
mately improving both scoring accuracy and the model’s
interpretability.

4.4.4 Effect of Transformer Layers
In our network, Transformer decoder layers are key to cap-
turing long-term dependencies and refining outputs through

self-attention and cross-attention. More layers help aggregate
information over time, potentially improving performance,

@ Springer

SRCC vs. Number of Layers
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Fig. 6 Effect of different transformer layers on the LOGO and Fis-V
dataset results

but excessive layers may cause temporal skipping, where
useful self-attention interactions are bypassed, leading to
degradation. We evaluate the effectiveness using the differ-
ent number of decoder layers. Figure 6 presents the impact of
varying decoder depths on the LOGO and Fis-V dataset. On
the LOGO dataset, the optimal performance is obtained with
a depth of 2, yielding a result of 78.19, while increasing the
number of decoder layers may result in deteriorated temporal
skipping. A reduced number of layers might limit the model’s
ability to fully leverage the available temporal information,
resulting in suboptimal data representations. Similarly, the
PCS and TES Ilabels achieve the highest SRCC on the Fis-V
dataset using two depth layers.

4.4.5 Effect of Variance in Query Initialization Module

The Query Initialization Module is proposed for initializ-
ing Temporal Decoder query embeddings. We found that
using different variances to initialize query embedding can
effectively mitigate the temporal skipping issue and enhance
interpretability. We analyse the impact of query initialization
variance and the final SRCC results. As shown in Fig. 7, for
the self-attention map and mitigating temporal skipping, ini-
tializing the query embedding with a larger variance, results
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Fig.7 Self-attention maps for queries initialised with varying variances. Figs 7a, 7b, 7c, 7d, 7e, and 7fdepict the self-attention maps corresponding

to variances of 0.1, 0.5, 1, 2, 5 and 10, respectively

in a more compact diagonal pattern in the self-attention map,
indicating a stronger correlation between action queries. This
is because a higher variance injects greater semantic diversity
into the initial query embeddings, preventing them from col-
lapsing into strictly time-aligned (diagonal) attention. When
the variance is too small, all queries start nearly identical
and remain confined to local temporal regions, making the
model prone to temporal skipping. In effect, a large variance
also acts as a regulariser that encourages cross-time explo-
ration and richer long-range associations. This ensures that
each clip is assigned meaningful features rather than sim-
ple mean values, thereby improving the interpretability of
the network. Regarding SRCC performance, experimental
comparisons with different variance values, as presented in
Tables 9, 10, and 11, show the results on the RG, Fis-V, and
LOGO datasets, respectively. The results indicate that using
arelatively larger variance normally yields the highest SRCC
scores across all three datasets.

4.4.6 Interpretability

To improve the single-score regression method and follow
the scoring logic of human judges, we disentangled each

Table9 Effect of Query Variance Initialization on Rhythmic Gymnas-
tics (RG) dataset, where Avg. SRCC results take the average of the four
labels

Variance Ball Clubs Hoop Ribbon Avg.

0.1 0.833 0.821 0.821 0.838 0.828
0.5 0.814 0.814 0.826 0.845 0.825
1 (Default) 0.823 0.774 0.788 0.849 0.809
2 0.814 0.856 0.779 0.862 0.828
3 0.796 0.857 0.765 0.861 0.820
5 0.785 0.881 0.782 0.839 0.822
10 0.794 0.798 0.812 0.812 0.804
20 0.778 0.798 0.855 0.849 0.820

clip’s score into difficulty and quality. As shown in Fig. 8, we
visualise the clip-level difficulty-quality regression results
for synchronised swimmers in the LOGO dataset. In this
visualisation, the blue curve represents the difficulty of the
current frame, the green curve represents the quality, and the
red curve indicates the overall score. Although the action has
a high difficulty in the first clip, its execution quality is aver-
age. In the second clip, no significant action is observed in the
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Table 10 Effect of Query Variance Initialization on Figure Skating
Video (Fis-V) dataset, where Avg. SRCC results take the average of the
two labels

Variance PCS TES Avg.

0.1 0.830 0.721 0.776
0.5 0.809 0.703 0.756
1 (Default) 0.784 0.690 0.737
2 0.862 0.685 0.774
3 0.830 0.707 0.767
5 0.795 0.708 0.752
10 0.780 0.681 0.731

Table 11 Effect of Query

. SRR Variance SRCC
Variance Initialization on
LOGO dataset, where SRCC 0.1 0.782
results take the average of the 05 0796
four labels
1 (Default) 0.708
2 0.727
3 0.650
5 0.618
10 0.624

video. In the fourth clip, the athlete performs the ballet leg
movement in synchronised swimming, demonstrating high
difficulty and execution quality. In summary, Fig 8 shows
that our model correctly assigns higher difficulty weights
to complex synchronised swimming moves while down-
weighting simple transitions. This aligns well with human
scoring logic and improves interpretability over black-box

single-score regression models. Similarly, as shown in Fig.
9, we present the performance of the Clubs action category
in the RG dataset. In the first clip, the athlete executes a
Valdez flip, a movement with high difficulty and high execu-
tion quality. In the third clip, the athlete performs a simple
movement with low difficulty but high execution quality. In
the fifth clip, a mistake occurs, leading to a significantly low
score.

Empirical results demonstrate that our difficulty-quality
regression module can provide clip-level scores and enhance
the model’s interpretability. Furthermore, by separately mod-
elling difficulty and quality factors, this module enables
a more fine-grained evaluation of action performance and
offers assessments that align with the scoring logic of human
judges.

In addition to providing explicit difficulty-quality decom-
position for each clip, our model also exhibits temporal
interpretability through attention mechanisms. We visualise
the cross-attention weights from the Temporal Decoding
Module to illustrate how the model distributes attention
across different temporal segments during decoding. The
visualisation reveals that the model dynamically allocates
higher attention scores to more discriminative and seman-
tically important clips in the input sequence. Specifically,
as shown in Fig. 8, in examples 1, 3, and 5, when the
action segments involve high-difficulty or high-weight move-
ments (e.g., ballet leg or lift movements in synchronised
swimming), the Transformer cross-attention module assigns
higher attention scores. In contrast, for less informative seg-
ments such as preparatory movements (examples 2 and 4), the
attention scores are significantly lower. This suggests that the

LOGO: Video: WorldChampionship2022_tech_preliminary, Seq: 5 (

Overall Score
Clip Difficulty

@

0.8

0.6

Score

0.4

0.2

0.0

Clip Qualtiy

0 2 4 6 8 10 12 14 16 18 20 22

26 28 30 32 34 36 38 40 42 44 46

Fig.8 Visualisation of our clip-level difficulty-quality regression method on LOGO dataset
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model attends to semantically important regions in a manner
that is aligned with human judgment, contributing to post-
hoc interpretability and human-aligned reasoning Fig. 10.

4.5 User Study

To rigorously evaluate the effectiveness of our UIL-AQA
interpretability in assessing difficulty and quality in video
sequences, we conducted a user study in which participants

compared pairs of motion video clips. Each pair consisted
of two clips, scored by our model based on their predicted
difficulty and quality levels. Based on their perception, par-
ticipants were then asked to determine which video in each
pair exhibited a higher level of difficulty or quality. Their
responses were compared against our model’s predictions to
assess the degree of alignment between human judgment and
our automated scoring system.
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Table 12 User Study Results on the Effectiveness of Our Network Inter-
pretability. Model-human agreement is the overall consistency between
difficulty and quality

Number of Participants 15

Total Video Pairs Evaluated 10*15=150
Difficulty Agreement (%) 66.67%
Quality Agreement (%) 79.17%
Model-human Agreement (%) 73.33%

This study aimed to validate our model’s ability to provide
interpretable, human-aligned assessments of video difficulty
and quality within an activity. Notably, the model was never
explicitly shown the labels for individual clips, only the over-
all activity and corresponding score. A total of 15 participants
took part in the study, each evaluating 10 pairs of motion
video clips. The experiment (as summarised in Table 12)
measured difficulty agreement, quality agreement, and the
overall model-human agreement.

Specifically, difficulty agreement quantified the align-
ment between the model’s difficulty scores and human
judgments, yielding an agreement rate of 66.67%. Simi-
larly, the quality agreement measured the alignment between
the model’s quality scores and human judgments, achiev-
ing a rate of 79.17%. The final Model-Human Agreement,
which combines both quality and difficulty assessments, was
73.33%, representing the overall agreement result. These
results indicate a strong correlation between our model’s
predictions and human perception, demonstrating that the
model’s interpretable scoring mechanism produces intuitive
and meaningful outputs. This reinforces its reliability as a
tool for evaluating video difficulty and quality in a manner
consistent with human intuition.

4.6 Efficiency Analysis

As shown in Table 13, we evaluate our model using a single
input sample with 48 tokens of 1024-dimensional features,
and measure the average inference time over 100 runs on
a single NVIDIA RTX 3090 GPU. While our model has
slightly higher FLOPs (0.27G vs. 0.05G) and parameter
count (5.52M vs. 1.73M) compared to the baseline CoFI-
nAl (Zhou et al. (2024)), it achieves a faster inference speed
(1.37ms vs. 1.66ms) — a 0.29ms improvement. More impor-
tantly, our model yields substantial performance gains: a
+0.098 improvement in SRCC and a +0.935 improvement
in RI-2. In addition, we conducted an ablation analysis of
resource trade-offs by reducing the number of transformer
layers and the input token length. Even with only 1 trans-
former layer or 24 input tokens, our model still achieves a
high SRCC of 0.779 and 0.752, respectively, clearly demon-
strating that the architecture maintains strong performance
under constrained resources.

5 Conclusion

Our UIL-AQA advances long-term AQA by integrating
interpretability into temporal modelling, significantly outper-
forming existing methods. By explicitly capturing clip-level
difficulty and quality, we provide a more transparent and reli-
able scoring mechanism, setting a new benchmark for future
AQA research. We introduce a new Attention Loss func-
tion and a Query Initialization Module while exploring the
impact of different positional encodings. To further reduce
the effect of uncertainty on scoring stability, we propose a
simple Gaussian noise injection module, which simulates
human biases. In addition, we introduce a Difficulty-Quality
Regression Module that decouples each clip’s action score
into difficulty and quality, enabling a fine-grained and inter-

Table 13 Comparison of model efficiency on the LOGO dataset. All models use VST as the backbone. We report FLOPs, number of parameters,
and inference time per sample Bold numbers indicate the best performance in each column

Model FLOPs (G) Params (M) Inference Time (ms) SRCC RI-2

ACTION-NET (Zeng et al. (2020)) 2.00 3.54 0.20 0.410 5.569
CoRe-GOAT (Zhang et al. (2023)) 109.00 25.21 27.56 0.560 4.763
USDL-GOAT (Zhang et al. (2023)) 116.94 40.21 28.95 0.535 5.022
TSA-GOAT (Zhang et al. (2023)) 1.85 37.95 2.14 0.560 5.409
T2CR (Ke et al. (2024)) 446.03 12.90 83.11 0.607 4.254
CoFInAl (Zhou et al. (2024)) 0.05 1.73 1.66 0.698 4.019
Ours (48 tokens) 0.27 5.52 1.37 0.796 3.084
Ours (36 tokens) 0.20 5.52 242 0.724 5.601
Ours (24 tokens) 0.13 5.52 2.53 0.752 7.006
Ours (1 transformer layer) 0.16 3.42 0.88 0.779 9.767
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pretable assessment and making AQA scoring more mean-
ingful and informative. Experimental results demonstrate
that our approach achieves state-of-the-art performance on
three AQA benchmark datasets, validating from both quali-
tative and quantitative perspectives that our model effectively
parses clip-level semantic meanings.

5.1 Future Work

In future work, we plan to invite expert judges to evaluate
the interpretability of our model, making the assessment pro-
cess more comprehensive and accessible for analysis while
increasing the fine-grained nature of the results. Furthermore,
we plan to address the issue of fragmented evaluation from
fixed-length segmentation. Possible directions include using
adaptive clip lengths to match semantic subactions better and
applying temporal smoothness regularisation to ensure con-
tinuity across segments. We believe these improvements can
further enhance the interpretability and robustness of clip-
level predictions.
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