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Abstract

Representation learning aims to discover individual
salient features of a domain in a compact and descriptive
form that strongly identifies the unique characteristics of a
given sample respective to its domain. Existing works in
visual style representation literature have tried to disentan-
gle style from content during training explicitly. A com-
plete separation between these has yet to be fully achieved.
Our paper aims to learn a representation of visual artis-
tic style more strongly disentangled from the semantic con-
tent depicted in an image. We use Neural Style Transfer
(NST) to measure and drive the learning signal and achieve
state-of-the-art representation learning on explicitly disen-
tangled metrics. We show that strongly addressing the dis-
entanglement of style and content leads to large gains in
style-specific metrics, encoding far less semantic informa-
tion and achieving state-of-the-art accuracy in downstream
multimodal applications.

1. Introduction

Artistic style refers to the unique visual appearance of
how a subject is depicted in a work of art. Style is ever-
evolving, and it is complex, if not impossible, to create an
exhaustive ontology for. Therefore, capturing this subjec-
tive information in a model is an open and challenging area
of research. Even for humans, style can be challenging to
pinpoint and separate. However, this task is easier in a com-
parative setting, where similarities and differences between
two stylistically similar images can hint at common proper-
ties. A constant challenge with automated approaches and
human judgment is separating and disentangling style from
the subject matter. This is especially an issue in the compar-
ative case, where two stylistically similar images can often

represent the same content.

Yet a representation of style has many applications.
Aside from simple style-based image retrieval tasks, there
are also other uses, such as style conditioned image
generation [0, 24], stylization [21], automatic style tag-
ging/captioning [19], and image translation [17].

Disentanglement in embeddings is critical in such mul-
timodal applications, where a clean disentangled signal of
the given modality is especially needed for aligning with
other modalities. Thus, improvements to the disentangle-
ment of embeddings for a modality such as artistic style can
more cleanly expose only the desired style features without
semantic information.

In our work, we show that this style/content entangle-
ment is still present in state-of-the-art representations. We
propose a novel learning algorithm for fully disentangled
learning of style. This explicitly disentangled representa-
tion benefits downstream tasks like style-based image re-
trieval and tagging. Our contributions are ':

1. A novel methodology for training a style representa-
tion model without any content/style entanglement in
the data, trained over BBST-4M [20]

2. New state-of-the-art in style representation learning
with enforced disentanglement, with a new benchmark
dataset

3. New state-of-the-art multimodal vision/language
learning in the context of artistic style for automatic
style tagging

10ur codebase: https://github.com/DanRuta/aladin-—
nst
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Figure 1. Please zoom in for details. (Left) Example style groups from the BAM-FG dataset. The images in each group are style consistent,
but they are also semantically consistent. For example, the top left style group has a consistent weathered paper style but is also consistent
in the subject matter of character design. The top right has consistent pastel style but is consistently interiors. The bottom left is consistent
moody vignette dark photography style, but all images are of landscapes. Bottom right vector art images all contain faces. (Right) Example
synthetic style consistent images, as used in our work (via NeAT). The left-most images in each style group are the reference style image.
The BAM-FG data (left) shows style consistency at the cost of entanglement with semantic consistency, unlike the synthetic data (right).

2. Related Work

The seminal work of Gatys’s neural style transfer [5] in-
troduced the concept of using neural, learning based meth-
ods for re-rendering a given content image, such as a photo-
graph, to match the visual artistic style of a second stylistic
image, typically an artwork. Other works extended neural
style transfer to multiple, and eventually arbitrary styles per
model [10, 12—14,25].

AvatarNet [23], and later SANet [16] explore the appli-
cation of self attention modules in performing style trans-
fer in a feed-forward manner, aligning feature statistics be-
tween the content and style images. PAMA [15] proposes
an alternative attention mechanism based on iterative refine-
ment of feature alignment, progressively adjusting content
features to match style features in a more spatially con-
sistent manner. ContraAST [1] uses self attention as per
SANet in conjunction with domain-level adversarial losses
and contrastive losses to push the stylized images to re-
semble distributions of real images better - thereby creat-
ing more convincingly real looking images regardless of
style. CAST [27] primarily improve this process by includ-
ing ground truth style images in the contrastive losses.

NeAT [20] further build on the work in ContraAST and
CAST, using an expanded version of the attention approach
in PAMA, and other robustness and quality improvements.
Additionally, they perform stylization as an image editing
process rather than an image re-generation process by pre-
dicting deltas over a partially corrupted version of the refer-
ence content image.

In a similar branch of research, image translation works
like MUNIT [9] and Swapping Autoencoders (SAE) [17]

decompose a pair of images into structural information and
global unlocalized latents, which can be mixed during in-
ference to render an image with mixed properties. These
works demonstrate how an embedding optimized to capture
global information (such as style) can be used in a genera-
tive setting.

Using a triplet loss, [3] learn a coarse metric style rep-
resentation for 7 styles, using the style-labeled subset of
the BAM dataset [26]. ALADIN [22] first explored a
fine-grained style representation using their newly labeled
BAM-FG dataset. Depending on the chosen similarity
strength, this larger dataset contains up to 135k style groups.
They design their model for the disentangled representation
of content and style by extracting features as global AdaIN
statistics from each encoder layer. The BAM-FG dataset
was curated via crowd annotation to select style-coherent
images in existing weakly labeled style coherent groups of
images from Behance.net. The labeling process removed
anomalies and cleaned the coherent style groups such that
the remaining images in a group, at several thresholds, was
human verified to be style consistent. This helped to drive
ALADIN to be state-of-the-art in style representation capa-
bilities, further to the training methodology.

However, this labeling process needs to be revised. The
dataset is indeed style coherent, but the labeling process
only improves the style coherency of any given small set
of images - it does not help avoid content and style dis-
entanglement. If all the images in a style group have the
same content depicted, the BAM-FG cleaning process only
helps ensure they are also style consistent. But resulting
style groups are also consistent in the content information.
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Figure 2. Visualization of our NST-driven style representation learning method. We show a training iteration with batch size 6, with 6
content images and 3 style images (in our experiments, we use much larger batch sizes but use 6 here for clarity). The content images are
stylized with a pre-trained and frozen Neural Style Transfer method using two copies of the 3 style images. We extract a style embedding
using layer-wise global moment statistics and the logits from a more localized vision transformer.
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Figure 3. A set of contrastive losses are computed for each styl-
ized image in the batch. The positive sample is the other sample
in the batch where the same original style image was used as a
style reference during stylization. As half the number of style im-
ages are selected per batch, there will always be two images with
the same style. The negative samples in the contrastive losses are
thus the remaining images in the batch, which are stylized with
other randomly sampled style images in the batch. Additional sets
of contrastive losses compare the stylized images’ embeddings to
the embeddings of the source style images, as per CAST [27] and
NeAT. Red squares represent ground truth images’ embeddings.

As artists develop their skills, they likely specialize in
specific subsets of subject matter, such as faces or character
design. Alternatively, the work they publish can showcase
a project they worked on where the subject matter was con-
strained to some requirements. This effect is visualized in
Figure 1 (left), showing a few style groups from the BAM-
FG dataset. The images therein are indeed style consistent,
but they also share semantic features.

3. Methodology

In our work, we set out to create a model to learn dis-
entangled representations of style without being affected by
semantics data biases. We seek to train a model on data that
has high variance in the semantic content depicted but has a
consistent style. As discussed in previous sections, real data
with such properties is rare or impractical to create through
human artists. Instead, we use the current state-of-the-art
neural style transfer methods to create synthetic datasets of
stylized images where the style is consistent, but where the
content varies depending on our source content images. Fig.
1 (right) visualizes synthetic stylized data used in our work.
Given a style image, we can generate images with the same
style but completely random and arbitrary semantic content.

Given a batch of content and style images, we know the
synthesized data’s ground truth style and content relations.
We dynamically use fast, feed-forward NST methods during
training to maximize the number of styles we can use with-
out the impractical storage space needed to pre-compute the
images. We induce the style learning signal through con-
trastive losses [2], computed amongst the images generated
by the NST method and the reference style image. We sam-
ple only half the number of style images in a batch to syn-
thesize two images with the same style in each batch, for



Model NST learning signal NeAT test set PAMA test set SANet test set Average values
NeAT PAMA SANet mAP IR-1 mAP IR-1 mAP IR-1 mAP IR-1
ALADIN-ViT [19] - - 16.823  0.270 | 9.9964 0.0575 | 12.493 0.0599 || 13.104 0.129
Ours (ViT) 4 85.306 66.308 | 51.012 15303 | 67.525 28.423 || 67.948 36.678
Ours (ViT) 4 69.226 23415 | 62.886 20.628 | 51.934  6.393 61.349 16.812
Ours (ViT) v 80.230 46.466 | 56.215 18.738 | 74.621 35.693 || 70.355 33.632
Ours (ViT) 4 4 84.997 59.650 | 68.468 30.563 | 67.021 23.443 || 73.495 37.885
Ours (ViT) 4 v 85.052 64.993 | 53.657 17.688 | 77.410 46.408 || 72.040 43.030
Ours (ViT) 4 v 77.056 36.413 | 64596 23.048 | 67.229 22.835 || 69.627 27.432
Ours (ViT) v 4 v 83.915 58900 | 67.484 29.745 | 74755 34.460 || 75.385 41.035

Table 1. Style representation learning metrics (IR-topk and mAP) of our model with different NST learning signals. We also compare

against ALADIN-ViT [

different style transfer works from literature: NeAT [20], PAMA [

each style. For each synthetic stylized image, we use the
other image stylized with the same style in this batch as
the positive and the remaining images in the batch (styl-
ized with the different style images) as negatives. This en-
courages our embedding to represent the style information
shared in the stylized pairs, regardless of the semantic con-
tent depicted, which is random. We use standard contrastive
losses to drive the learning signal using this self-supervised
approach of data labelling, as visualized in Fig 2.

This approach also benefits from using style images from
datasets where style-consistent labeling is not required in a
self-supervised manner. We thus use the BBST-4M dataset
[20], as it has one of the highest diversity of style images
- 2 million images in the style subset. The style subset in
BBST-4M is also filtered to only contain stylistic (artistic)
data, unlike BAM-FG, which includes style groups of non-
stylistic images such as photographs. Artistic images are
better suited for NST, as these processes are specifically de-
signed to transfer such style.

3.1. Moments

Global feature statistics have been demonstrated in liter-
ature [8, 14] to capture global style in an image. Standard
statistics used are mean and variance. In moments, these
represent the first and second moment, though higher or-
der moments have been used to drive NST through moment
matching [11], with higher quality. We thus use the first
four moments in our work, further extracting skewness and
kurtosis from feature statistics in the VGG branch.

The skewness formula is shown in Eq 2, calculated via
the z scores (Eq 1), and the kurtosis is shown in Eq 3, where
a positive value indicates leptokurtic data distribution, and
a negative value indicates a platykurtic distribution - mea-
sures of the tails of the data distribution.
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We also include highly expressive features extracted
from a vision transformer [4] model to capture more local-
ized features in an image. We concatenate these embed-
dings and project them into a 1024 dimension style vector,
as shown in Figure 2.

3.2. Loss

The loss objective is a standard contrastive loss, shown
in Eq 6, where A represents our ALADIN-NST model, x4
and x. represent style and content images respectively, and
N ST represents a randomly sampled NST method from the
methods used, to stylize x, and . into S.:

Sse = NST (x4, 2.) “4)

pos = A(Sac) s A(Sse)p/T o)

£ 1 ( exp (pos) )
T 8 exp (pos) + Z €xXp (-A(Séc)gA(Ssc)n/T)

(6)

4. Experiments

Due to the cross-NST approach in our style representa-
tion learning signal, the 2 million images in each of the con-
tent and style splits of BBST-4M lead to a synthetic dataset
of an effective 4 trillion images. This creates a practically
limitless combination of style and content during training.

4.1. Data

To evaluate how well the model represents specifically
disentangled style information, we need to consider test
data that is also wholly disentangled. We also apply our
synthetic NST dataset creation methodology for the test set,
ensuring no overlap with training data. Using 400 new style
images from Behance, and 100 new content images from



Model Dataset NeAT [20] test set | PAMA [15] test set | SANet [16] test set Average values
mAP IR-1 mAP IR-1 mAP IR-1 mAP IR-1
ALADIN [22] BAM-FG 59.549 8.085 38.423 1.7025 48.712 3.560 48.895  4.449
— Fused [22] BAM-FG 53.941 4.485 32.686 0.550 42.592 2.395 43.073 2477
ALADIN-VIT [19] | BAM-FG 16.823 0.270 9.996 0.058 12.493 0.060 13.104  0.129
SAE[17] BAM-FG 51.600 16.100 | 28.500 4.000 28.814 4.643 36.305  8.248
Ours BAM-FG 85.955 58.108 67.699 24.967 74.355 27.154 76.003 36.743
Ours BBST-4M || 90.965 69.523 80.861 42.803 84.953 45.258 85.593 52.528
Table 2. Style representation strength, compared to baseline methods. Higher values are better.
Model Dataset NeAT [20] test set | PAMA [15] test set | SANet [16] test set Average values
mAP IR-1 mAP IR-1 mAP IR-1 mAP IR-1
ALADIN [22] BAM-FG 5.547 0 8.523 0 4.642 0 6.237 0
— Fused [22] BAM-FG 11.008 0 19.239 0.013 8.920 0 13.056  0.004
ALADIN-ViT [19] | BAM-FG 15.058 0.023 10.081 0.028 8.097 0.003 11.079 0.018
SAE [17] BAM-FG 2.198 0.003 3.815 0.005 2.758 0 2.924  0.003
Ours BAM-FG 1.523 0 1.575 0 1.630 0 1.576 0
Ours BBST-4M 1.491 0 1.427 0 1.652 0 1.523 0

Table 3. Comparisons with the same baselines as Table 2, measuring similarity between content images. In this table, a higher value is

worse, as it represents higher content entanglement.

Flickr, we extend BBST-4M with synthetic stylized images.
We create 40k images, stylizing each content image with
each style.

We use NeAT, PAMA, and SANet variants of this test
set to evaluate the generalization of style representation in-
dependent of any systematic signatures specific to any NST
method - visible or otherwise. We select these three NST
methods given their fast and leading stylization qualities in
literature. We manually selected the source style images to
ensure a high variety of styles and no duplicates or styles too
similar by manually inspecting style-based image retrieval
for each style image as a query over the remaining test set
style source corpus.

We’d like to stress that although we are evaluating the
disentanglement capabilities of our technique on synthetic
data, we show through our other experiments that our rep-
resentation carries over its strengths to real data, also. The
synthetic data is only used for evaluating disentanglement
properties, as real disentangled data is not available.

4.2. Metrics

We build our evaluation pipeline around image retrieval
using these synthetic test sets. The primary metric we mea-
sure is mean average precision (mAP). We calculate the
mAP by considering the other 99 content images stylized
with the same style as positives and those stylized with the
different style images as negatives. For each image in the
test set, we re-arrange the remaining test set images, sorted
by similarity in the style embedding space to this query im-
age. We also use the Instance Retrieval (IR) [22] metric

from ALADIN, for which we measure the fop-k accuracy
of retrieving the source style image from the corpus. We
remove the other stylized images of the same style from the
corpus to only leave the query and source images sharing
the same style for a given search.

4.3. Ablations

Table 1 contains ablations where we experiment with the
NST methods used for driving the style learning signal dur-
ing training. Using more than one method is essential for
generalizing the style representation. Using only one NST
method risks modeling specific artifacts of that method. Fu-
ture work could incorporate additional new NST method-
ologies as the field advances. Our final model uses all 3
methods: NeAT, PAMA, and SANet. We explore these ab-
lations using only a ViT backbone, such that we can also
draw fair comparisons to literature using the same architec-
ture, ALADIN-ViT.

4.4. Baselines

We compare our model against baselines in Table 2.
Demonstrating also how the BAM-FG dataset needs to be
revised as a style-only dataset. We train Swapping Autoen-
coders (SAE) [17], and our model with BAM-FG to com-
pare the data fairly.

The accuracy rankings according to the literature are
flipped in our measurements as we test with purely disentan-
gled labels. ALADIN scores highest despite being the first
relevant model because its features are extracted globally.
Their fusion includes ResNet embeddings, which introduce
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Figure 4. Style-based image retrieval comparison between our method variants and previous literature.
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ALADIN-ViT

neon-like, warm toned light-
ing, light trail, strong outline,
all cap

narrative driven, manga,
Japanese, cartoon drawing,
graphic art

regulated layout, posh, pro-
moting, triangle composi-
tion, branding package

mixed media, layered
composition,  watercolor
painting, handmade art-
work painting, illustrative

color splash, marker draw-
ing, expressionist, word
sound effects, subtle colors

Ours (fused)

dark image, chiaroscuro,
black and red, red, dark
picture

documentary,
past, documentary
dark contrast

vigorous,
shot,

trustful, housing, posh,
housing architecture ren-
der, solarpunk

colorful drawing, abstract
art, abstract  artwork,
nonobjective, cubism

storyboarding, interpretive,
panel, story, storyboarding

Ours flame, spark, dark vibe, ex- contrasted, high contrast, glass, trustful, architectural  soft, soft color, soft and comic book art, black and

plosion, dark space suburban, documentary  landscape, pentagonal,  bright color, feminine, soft ~ white art, comic art, comic,
shot, documentary pointy colors doodle art
coor

ALADIN-ViIT cold hue, product-focused, had material, watery, bird measuring, technical userinput, 3d building plan, ~ expressive, irregular angle,
product description, blue- eye view, nobody sketch,  design sketch, internet, gathering informa- clean stroke, blue glow,
based, digital publication sketch, typography element  tion, datum collecting copy

Ours (fused) mystical, fantasy concept art,  reflective, commercial shot, sketch scamp, scamp, uxui design, design inter- poverty, struggle, slum,
fantasy art, aqua, fantasy rough texture, geometric sketch work, sketch, face, user interface, ui in- evocative, documented
painting shape, geometric line sketched line structional design, interface

Ours

ALADIN-ViT

layered composition, aqua,
mystical, fantasy painting,
digital print

cool hue, mockup, magazine
booklet layout, blue themed,
graphic layout

embossed, small shape,
cup, stone image, light grey

hand drawn, changing pro-
portion, sketchy, sadden-
ing, line drawing

idea, blended, pen and pen-
cil, sketch, quick

colorful,
bold, flow, color-heavy

bright, bright

page layout, image of arti-
cle, blocky layout, concep-
tual layout, stationery de-
sign

curved line, colorful draw-
ing, mark making, blue ink
drawing, thin stroke

high-contrast,  retouched,

noir, poverty, slum

fading, sans serif and serif,
red highlighting, thin letter,
typeface

Ours (fused)

editorial design, editorial,
editorial mockup, editorial
work, editorial mockup

line, ink work, ink, ink
drawing, outline

pastel, pastoral, black tea
painting, art appreciation,
colorful drawing

abstract line, mark-making,
line, fine, fluid line

spontaneous, beginner,
sketchbook, paper pattern,
light pencil work

Ours

editorial, editorial design,
readable, editorial mockup,
professional style

animation sketch, fine-line
drawing, figurative draw-
ing, line drawing illustra-
tion, sketch of cartoon char-
acter

pastel, art therapy, fine
art, traditional illustration,
child illustration

fluid, blue,cut  paper,
plump, material sample

printmaking, delicate type,
various printed paper work,
lino, handmade

Figure 5. Please zoom for more image detail. Zero-shot automatic style tagging comparison, between ALADIN-ViT, our model, and our
fused variant, joining our disentangled embeddings with ALADIN-ViT. We show the top 5 tags for each image.

semantic entanglement as a by-product of the higher BAM-
FG style scores. ALADIN-VIT scores are even lower on our

disentangled test set due to a lack of explicitly global fea-
tures, therefore more intensely focusing on localized and,



thus, typically more semantic information.

In Table 3, we repeat our evaluation found in Table 2,
but instead of measuring the style retrieval in our test sets,
we measure content retrieval. Like the style evaluation, we
compute mAP by using a query image and evaluating re-
trieval of the corpus concerning all the other 399 images of
the same content, but stylized with different style images.
In other words, measuring semantics-based image retrieval,
irrespective of style.

For IR-k, we filter out the other stylized versions of the
content image stylized in the query and measure the re-
trieval of the original un-stylized content image. We run
this set of evaluations to measure how strongly the style em-
beddings capture content/semantic information. Supporting
our previous explanations, ALADIN’s fused and ViT vari-
ants each capture more semantic information. Our work
improves upon this, as our style embeddings perform much
more poorly at retrieving images with the same content.

4.5. Training details

We train ALADIN-NST with the NeAT, PAMA, and
SANet NST methods for roughly 3 days on a single A100
GPU until convergence. We stylized images for training
using 512px resolution, which we downsample to 256x256
for the VGG branch and 224x224 as needed for ViT-B_16,
using the same ViT as ALADIN. We disable the prior blur-
ring in NeAT for speed. We use the Adam optimizer, and a
target batch size of 1024 via logit accumulation. We decay
the learning rate by 0.999875 every 100 iterations.

4.6. Style-based image retrieval

In Figure 4, we visualize a comparison of our method
to baseline methods in the literature for style-based image
retrieval. We show our approach trained on both BBST-4M
and BAM-FG. We perform the retrieval over a corpus of
500k images from BBST-4M.

Our results are comparable regarding visual features, im-
proving slightly on the color consistency of retrieved results
(bottom right). However, there is less semantic consistency
between our model’s query and outcomes, especially com-
pared to the previous ALADIN models. In the top left of
Figure 4, the heart in the query image retrieves some other
heart-related imagery in baselines. In the top right, baseline
recovered results contain faces and character designs, also
present in the query.

5. Multimodal vision-language learning

We use style embeddings from our proposed model to
learn a joint multimodal representation between style and
language. We replicate the work in StyleBabel [19], where
style tags attributed to images can be used as labels for this
task. We replace their ALADIN-VIT vision backbone with
ours, and we similarly train an MLP, joining these style

embeddings to text embeddings extracted using CLIP [18]
through contrastive learning. We aim to measure how our
new style embeddings can be used in this multimodal set-
ting.

We measure a WordNet score of 0.329, which beats their
baseline CLIP WordNet score of 0.215, but does not beat the
ALADIN-ViT WordNet score of 0.352. This may be due to
the inherent content/style entanglement of the style tags in
StyleBabel, which itself is not strictly disentangled. There
exist several tags in StyleBabel, such as t-shirt design, in-
terior design, fashion photography, which do describe the
style, but in a context that is also grounded in semantics. By
explicitly not encoding semantic information in our style
embeddings, such tags are more difficult to retrieve.

Inspired by the fusing [22] of the complementary AL-
ADIN and ResNet [7] embeddings, we explore a fusion of
our disentangled style embeddings with ALADIN-ViT em-
beddings, which contain some semantic information. We
extract and concatenate embeddings from both models and
use this dual-model embedding as a style embedding for
learning the joint vision+language multimodal embedding
against CLIP. We achieve a state-of-the-art WordNet score
of 0.415 on StyleBabel tags. We use the same test split for
our measurements. In Fig. 5, we visualize automatic zero-
shot style tagging with ALADIN-ViT (baseline), our model,
and our model fused with ALADIN-ViT over images from
the StyleBabel test set.

6. Conclusions

We explore a novel learning methodology for artistic
style, achieving stronger disentanglement. We demonstrate
the value of this by further achieving state-of-the-art multi-
modal vision+language learning on StyleBabel tags.

Our approach relies on NST as a strong driver of style
consistency, thus limiting us to the capabilities of such au-
tomated stylization methods. However, as NST methods
continue to improve, so can our method in how well it can
capture style. The better the artistic stylization process can
be modeled by NST models, the better our technique can be
trained to capture that style, by simply including the tech-
nique in our pipeline.

For practicality, we can only rely on fast, feed-forward
approaches. Optimization and diffusion based techniques
are too slow to dynamically synthesize training data during
the training loop unless this data is synthesized ahead of
time, trading off variety of artistic styles and high storage
costs.

Further work could explore scaling the Vision Trans-
former branch of the model, as well as exploring variants
with a more global context.
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