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Abstract

The aim of this thesis is to track objects on a network of cameras both within
(intra) and across (inter) cameras. The algorithms must be adaptable to change
and are learnt in a scalable approach. Uncalibrated cameras are used that are
spatially separated, and therefore tracking must be able to cope with object
occlusions, illuminations changes, and gaps between cameras.

The consistency of object descriptors is examined. In construction of robust ap-
pearance histogram descriptors, the histogram bin size, colour space and correla-
tion measures are investigated. The consistency of object appearance is used as
a measure of success for the possible solutions for tracking objects both intra and
inter camera. The choice of descriptor will strongly affect tracking performance,
hence these results are important and referred to throughout the thesis.

Crowded scenes of people would cause an appearance based individual tracker
to fail. Therefore a novel solution to the problem of tracking people within
crowded scenes is presented. The aim is to maintain individual object identity
through a scene which contains complex interactions and heavy occlusions of
people. The strengths of two separate methods are utilised; a global object search
seeds positions to a localised frame by frame tracker to form short tracklets. The
best path trajectory is found through all the resulting tracklets. The approach
relies on a single camera with no ground plane calibration and learns the temporal
relationship of objects detections for the scene. The development of a two part
method allows robust person tracking through extensive occlusions and crowd
interactions.

In addition to tracking objects within crowds, this thesis presents a number of
contributions to the problem of tracking objects across cameras. A scalable and
adaptable approach is used across the spatially separated, uncalibrated cameras
with non overlapping fields of view (FOV). The novel approach fuses three cues
of appearance, relative size and movement between cameras to learn the camera
relationships. These relationships weight the observational likelihood to aid cor-
relation of objects between cameras. Individually each cue has a low performance,
but when fused together, a large boost in correlation accuracy is gained. Unlike
previous work, a novel incremental learning technique is used, with the three cues
learnt in parallel and then fused together to track objects across the spatially sep-
arated cameras. Incremental colour calibration is performed between the cameras
through transformation matrices. Probabilistic modelling of an object’s bounding
box between cameras, introduces a shape cue based on objects relative size, while
probabilistic links between learnt entry and exit areas on cameras provides the
cue of inter camera movement. The approach requires no colour or environment
calibration and does not use batch processing. It learns in an unsupervised manor
and increases in accuracy as new evidence is accumulated overtime. Extensive



testing is performed with 7 days of video footage using up to eight cameras with
an hour of groundtruthed data. The use of these key developments allow for a
flexible and adaptable approach to tracking people and objects intra and inter
camera.

Key words: Human Tracking, Human Detection, Human Surveillance,Correlation
Measures
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Nomenclature

Symbol Explanation
CAVIAR Context Aware Vision using Image-based Active Recognition
CCCM Consensus-Colour Conversion of Munsell Colour Space

CONDENSATION Conditional Density Propagation
CLUT Colour Lookup Table also known as CCCM
GMM Gaussian Mixture Model

HI Histogram Intersection
HSV Hue, Saturation, Value Colour space

Inter Camera Between multiple Cameras
Intra Camera Within the one Camera

MCMC Markov Chain Monte Carlo
MI Mutual Information

FOV Field of view
Real Time Frame refresh rate of 25fps

RGB Red Green Blue Colour Space
Source Entry Point on a camera
Sink Exit Point on a camera
SVM Support Vector Machine



Symbols

Symbol Explanation
x, y Pixel location
Σ Covariance
α Gaussian Learning rate
k Gaussian Distribution
K Number of Gaussian Distributions
η Gaussian probability density function
ω Weight of Gaussian Distribution
µ Mean
T Time Reappearance Threshold
t time
σ2 Variance
r, s Histograms containers

u, i, j Histogram bins
m Number of histogram bins

fi(r) Frequency Histogram of histogram r, bin i
∆i Histogram Bin Width
δ Delta Function
ρ Bhattacharyya Coefficient
X System Variables
A State Transition Matrix
S Covariance of Innovation

KG Gain Matrix
n Process Noise
z Measurement including noise
l Measurement
v Measurement noise
ξ Covariance of estimated system error
W Number of head and shoulder detections
D head and shoulder Detection
ψ∗ Reference Appearance model of Object
ψ Appearance Model of Object
St Object State at time t
τ Number of states in a frame
β Region ID
O Object
H Transformation matrix
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Chapter 1

Introduction

The motivation behind this work is to aid the operator’s decision process by track-

ing objects accurately within multiple spatially separated cameras. The tracking

occurs on (intra) and between (inter) cameras. The tracker should require no

colour or spatial calibration about its environment. The techniques have no a

priori data, but learn and are adaptable to the camera relationships over time.

This will cause object correlation accuracy and interactions within the cameras

to improve the tracking over time.

In this chapter, the applicability and use of object trackers, together with the

goals of the research is presented. The social relevance of the work is given

followed by the global structure and key contributions of this thesis based on

scalable and adaptable tracking are discussed.

Automated tracking of objects in long range video is a large and growing field

with many applications. It is used within many vision applications, these include

• tracking and identifying players within sports monitoring [70, 74, 112].

• tracking the movement of vehicles on roads [62].

• the construction of smart rooms or offices [45].

1
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• the tracking of body parts for Human Computer interaction and perceptual

user interfaces [37]

• The tracking of features within video sequences to allow for identification

within a static database in automated video content retrieval [8]

• Use of the surveillance cameras in order to automatically track and follow

people between cameras [13, 26]

Many of these approaches use few cameras or are in a restricted experimental

environment. The proposals within this thesis aim to use an incremental and

flexible approach; this allows a greater number of cameras to be used with a

more flexible setup of equipment.

Tracking individual objects on surveillance cameras remains a difficult problem

due to the complex interactions and occlusions that occur. Human tracking is

a particularly difficult field as humans are deformable objects, meaning there is

no fixed shape, size or colour that can be learnt. In addition, often the envi-

ronments in which humans are tracked have very challenging conditions, such as

illumination changes, background clutter, or occlusions from the background or

objects themselves. To be able to achieve robust tracking there are a number of

issues to consider which are examined through this thesis. The choice of features

or descriptor used to represent the object is crucial. The ability to handle short

and long term occlusion is also important, similarly, tolerance to the appearance

variance of objects is necessary.

Surveillance cameras are increasingly being used as a tool to monitor and de-

ter crime. As a result, there are large numbers of cameras which lack effective

continuous monitoring due to the limitations of humans in managing large-scale

systems. Therefore, tools to assist and aid the operator’s decision process are

essential. Visual surveillance systems are commonly placed in large areas with

high levels of dense traffic such as in airports, rail stations and shopping centres.
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This results in large numbers of cameras in constantly changing environments

meaning that tracking must be adaptable to changes while scalable in design.

This work proposes techniques to address these issues.

In Chapter 2, previous work related to tracking and the detection of objects is

discussed. Significant methods from the past are presented, with their contribu-

tions and limitations highlighted. Chapter 3 provides a detailed examination of

techniques used in later chapters.

This thesis consists of a number of key contributions over three core chapters

/ areas. Suitable descriptors to track objects are first examined in Chapter 4.

A number of techniques to form appearance descriptor models are investigated.

Different colour spaces and correlation methods are proposed, while quantisa-

tion is used to introduce illumination invariance. The use of quantisation allows

for Parzen windowing to be employed to remove bin size constraints. Using

groundtruthed data, the colour consistency of the techniques to form appearance

descriptors is found for objects both inter and intra camera.

In Chapter 5, once the optimum combination of colour space, correlation and

quantisation method are found, the results are employed . Within this chapter a

novel approach is proposed to effectively track people on a single camera within

a crowded scene with no ground plane information. The use of a head and

shoulder detector provides “seed” object positions, these are tracked using a

Mean Shift optimisation and terminated once no longer accurately tracking the

original object. These short tracklets are combined with dynamic programming to

produce a single trajectory of individuals through a sequence containing multiple

occlusions and interactions.

Chapter 6 extends tracking into a network of up to eight cameras over two floors

in real time (25fps). The system has no initial calibration or a priori information

and contains cameras with both overlapping and non-overlapping field of view.

The inter camera tracking is based around three individually weak cues of colour,
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time and shape. For scalability, the cues are learnt incrementally over time using

observed correspondences that occur. The cues will learn in an unsupervised

manner the relationships between the eight cameras, allowing tracking accuracy

to increase. The scalable and adaptable real time algorithm is run for up to

five days to show stability of accuracy. Extensive testing on three difference

sequences evaluate inter and intra camera object tracking against groundtruthed

data. The thesis is concluded in Chapter 7, examining the findings from each

chapter, together with possible directions the work could be progressed in the

future.



Chapter 2

Background

This thesis applies both tracking and detection theories to the security surveil-

lance field. Relevant background work is therefore discussed in both the detection

of objects and their tracking. The work within tracking is then further subdivided

into single and multiple camera approaches both with and without overlapping

fields of view between cameras.

2.1 Feature-based Object Detection

The detection system of Rowley et al [90] consisted of two neural networks,

trained to detect frontal, upright faces in gray scale images. The first, faster

network, performs an initial sweep to pre-screen candidate regions for the second,

slower and more accurate detection. A similar idea, in the form of a cascaded

detector was employed by Viola and Jones [107], who proposed a real-time face

detection system. It used simple Haar-like features [64], with training and feature

selection performed by Schapire et al ’s AdaBoost [91]. They proposed the use of

integral images to reduce computing costs, and extended the notion proposed by

Rowley [90] through the use of a cascade of increasingly complex classifiers. The

5
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use of cascades allows for a low computational cost at run time. With high com-

putation for the offline training of the classifier Oren et al [79] and Papageorgiou

et al [82] used contour matching to train a detector to detect a full human body.

However this method did not cope well with occlusions as a single contour around

the body was used, and this was easily corrupted by occlusions. Mohon et al [71]

proposed to solve this by sub-dividing the human body into its constituent parts

of head, legs, left and right arms. These detected sub parts were grouped and

classified by a Support Vector Machine (SVM), to determine actual person config-

urations [105]. Forsyth and Fleck [34] introduced body plans for assembling body

parts. The body parts were simplistic pairs of parallel edges, these were then as-

sembled by Ioffe and Forsyth [46] using projected classifiers. However, due to the

simplistic features used, failure occurs in the presence of clutter or baggy cloth-

ing. Sigal et al [95] used a conditional probability distribution to model body part

relations. However this was defined in 3D, requiring at least three stereo images

which was a major constraint. Mikolajczyk et al [69] modelled humans as flexible

combinations of boosted face, torso and leg detectors. Parts are represented by

the co-occurrence of orientation features based on 1st and 2nd derivatives. The

procedure is computationally expensive, but robust part detection is the key to

the approach. Robust detection was possible, grouping different features into a

single classifier. This is a “bag of words” approach, where each feature is a word

and they are grouped together into a “sentence”. Micilotta et al [66] estimate

the location and approximate 2D pose of humans through detection. They learnt

individual body parts, and applied a coarse heuristic to eliminate outliers. An

apriori mixture model of upper body configurations was then used to provide a

pose likelihood for each configuration . The parts are then combined to form a

joint-likelihood model. The combination of detectors allows for a more robust

classifier allowing it to reject false matches.
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2.2 Background Modelling

The detection of objects on individual images via a global search technique is

a popular and fast moving field. However , if a video stream is available, it is

sensible to use the history of the sequence in the current frame. One method,

is to identify motion. Lucas and Kanade [63, 96, 55] proposed an image based

correlation approach which is commonly used to compute optical flow. Optical

flow computes a motion vector on a per pixel basis corresponding to the image

velocity and is successively updated on a frame by frame basis. However, this is

a computationally expensive method, and often the motion vectors of the pixels

will have a high noise level, although this can be reduced by smoothing and sub

sampling.

The process of background subtraction is a more popular method of separating

the background (static parts) from the foreground regions (dynamic parts) of

interest. The pixels that are changing colour are identified as foreground, allowing

the static background to be ignored or removed. Extensive use of a dynamic

background subtraction algorithm is made within this thesis.

Initial research into background segmentation resulted in the technique called

chroma-keying, this was first used by Larry Butler, who won the Academy Award

for Special Effects for the Thief of Baghdad in 1940. This was a hardware based

technique using a screen behind the foreground object. The screen is of a con-

stant colour, normally green or blue. The use of a constant colour allows the

background screen pixel to be identified and therefore removed. A software ap-

proach was first presented by Smith and Blinn [97] and this is still a popular

technique for constrained environments such as film or virtual reality. However,

the need for specialist equipment limits its use to these constrained application

domains.

Most software background segmentation can be classified by two main methods;
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• Non-adaptive, for example frame differencing [89]. Non-adaptive back-

ground subtraction methods require manual re-initialization to acquire the

static background image. Without initialization, errors in the background

accumulate over time, making non-adaptive methods unsuitable for un-

supervised, long-term tracking applications especially where illumination

changes.

• Adaptive, these include the mean image over time, alpha blending [40],

Kalman filtering [88], and Gaussian Mixture Models [100]. These ap-

proaches adapt to changes in the background over time.

Rosin and Ellis [89] made use of a simple technique known as frame differenc-

ing. Where successive images are subtracted from each other and thresholded to

show pixels that have changed colour and therefore could contain motion. The

problem with this technique is that segmentation fails when the foreground is a

similar colour to the background and it can only be applied inside under con-

trolled lighting as it is very sensitive to lighting or shadow changes. Haritaoglu

et al [40] learn the background scene during a period of no foreground object by

representing each pixel by three values; its minimum and maximum intensity val-

ues and the maximum intensity difference between consecutive frames observed

during this training period.

Kalman filtering approaches such as that proposed by Ridder [88] can provide a

partial solution. While Wren [110] with the Pfinder system proposed a per pixel

background model, where each pixel had a mean colour value and a distribu-

tion centred at that mean, it was however, sensitive to initialisation inaccuracies.

An extension of this is the use of multiple Gaussian distributions on a per pixel

basis to model the individual pixel history. This approach was originally pre-

sented by Stauffer and Grimson [100]. This method uses mixtures for each pixel

to provide a more detailed model of the background while maintaining a low
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computational cost. A more detailed explanation is given in Section 3.1. De-

spite its success, shadows can cause problems as they are incorrectly classified as

foreground. Therefore, work has taken place to identify and remove the shadows.

Shadow Removal

Shadows can cause serious problems to segmentation by distorting the colour and

shape of objects or giving false positive results. Cucchiara et al [25] proposed

to use the HSV colour values to identify shadow areas, as they found that if

a shadow is cast on a background pixel, the hue and saturation components

change, but within a threshold if a shadow is present. Horprasert et al [41] labels

shadows depending on the distortion of the brightness and the distortion of the

chrominance of the difference.

While the Stauffer and Grimson method of using a mixture of Gaussians works

well for most backgrounds, it can incorrectly label shadows as foreground. To

remove this constraint, KaewTraKulPong and Bowden [16] proposed a technique

based on Gaussian mixture models, to identify moving shadows that otherwise

would be incorrectly labelled as foreground. To do this they make use of the

brightness and chromaticity of pixels. Each non-background pixel is compared

to the current background model, and if the difference in both chromaticity and

brightness are within a threshold, the pixel is considered to be a shadow, and

labelled as background.

An implementation of the approach by KaewTraKulPong and Bowden was avail-

able and this together with its real time computation meant it was chosen to be

the segmentation method throughout this thesis. A more detailed explanation

is given in Section 3.1. In Chapter 5 it is used to reduce the false positive rate

of the head and shoulder detector and to improve the reliability of the tracker.

In Chapter 6 its high speed and accuracy of detecting non-background objects
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in the videos allows for its use as the object detector for tracking objects cross

cameras in real time.

2.3 Foreground Modelling

After background modelling has segmented foreground objects of interest, be-

tween frame tracking of the objects is possible. The way in which the tracked

object is represented is crucial to the success of the tracking. When there is

no predefined explicit shape model, some possibilities (as shown in Figure 2.1),

are the bounding box 2.1(b), an ellipse [24] 2.1(a), the contours of a blob [47]

2.1(c), or the blob itself [14]. The bounding box shape is often referred to as the

kernel. If there is an explicit shape model, a stick figure can be used, or every

body part can have its own box [110]. When modelling the foreground in order

Figure 2.1: Examples of object representation when tracking, (a) uses an ellipse.

(b) uses a bounding box. (c) uses the contour of the object

to track areas of interest, the next distinction is the source of the image - single

or multiple cameras, both with advantages and disadvantages.
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2.3.1 Single Camera tracking

Although very promising results have been presented through the use of multiple

cameras, there are practical restrictions on having multiple cameras covering large

scale installations due to cost. In addition, a single camera allows for simple and

easy deployment. Therefore, a number of algorithms have been proposed to track

objects on a single camera.

BraMBLe is a blob-based method proposed by Isard and MacCormick [48]. This

is a multiple blob tracker that generates a blob-likelihood based on a background

model and appearance model of the tracked objects. A Particle Filter framework

is used to track an unknown number of people. Linking blobs together and learn-

ing their relationships, it is used by Bose et al [14] to track multiple interacting

objects. Particle Filters were also used by Okuma et al [78] in conjunction with

a boosted detector to help remove false particles in the filter to track fast moving

ice hockey players.

The motion of objects can be used with a Kalman Filter [109] to track objects

with an assumed constant velocity, as proposed by Xu et al [112] or Iwase and

Saito [50]. Both authors use the motion model to track football players, while

Boykov and Huttenlocher [17] use a similar model to track vehicles on highways.

Koller et al [62] employ a contour tracker based on intensity and motion with a

Kalman Filter for car surveillance.

Through the use of appearance, the accuracy of tracking can be significantly in-

creased. Both Comaniciu et al [24] and Bradski [18] use Mean Shift to track

regions based on correlation to a reference colour model. The search is determin-

istic using a metric derived from the Bhattacharyya coefficient as an appearance

similarly measure; it proceeds iteratively from the final location in the previous

frame so as to minimise the distance measure to the reference colour model. The

advantages of this method is that no dynamic model is needed in advance. This
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copes with low resolution, deformable objects and partial occlusion, and can be

extended with a Kalman Filter to use the velocity of the objects to improve track-

ing. However it will fail when parts of the background exhibit similar colours or

when the tracked object is heavily occluded. Khan and Shah [58] use images

segmented into different classes, that are then modelled by Gaussian mixtures. A

conventional Bayesian-based tracking process is performed to track people. In the

case of occlusions, the Gaussian models of visible objects are updated while the

occluded objects are not. Senior [92] similarly learns a probabilistic model of the

appearance of the tracked objects to track through occlusions and illumination

changes. McKenna et al [65] use colour information to disambiguate occlusions

that occur during tracking and to provide qualitative estimates of depth order-

ing and position during the object occlusion. Nillius et al [75] track individual

football players until they merge, creating a new track identity until the player

splits or merges with further people. This creates a “track graph” of the merging

and splitting between players. Then the feature vectors of an individuals appear-

ance is used to find the most likely set of paths for a given target based upon

appearance.

In order to address non-Gaussian movement of objects, Isard and Blake [47] intro-

duced CONDENSATION (Conditional Density Propagation). This is a factored

sampling method introduced by Grenander [38] iterated over successive frames.

In factored sampling, each sample in the sample set is weighted by a weight

proportional to the sample probability at the previous time step. The resulting

sample set will then represent the conditional probability. A similar sampling

method was developed by Gordon et al [36] and Kitagawa [60] presented as

Monte-Carlo methods. These iterative factored sampling algorithms are forms

of Particle Filters. The basic idea of a particle filter is that random sampling

is used to estimate a Bayesian, often multi-modal, model. CONDENSATION is

used with active deformable contours to track a moving outline with substantial
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clutter. However this requires a large number of particles to accurately track the

contour and is computational expensive if the dimensionality of the search space

is high. Hue et al [43], Khan et al [59] and Vermaak et al [106] extended the

particle filter framework to track multiple objects. Khan uses a MCMC (Markov

Chain Monte Carlo) based particle filter and Vermaak uses a mixture particle

filter for each tracked target. Okuma et al [78] combines the mixture particle

filter with AdaBoost [107] to detect multiple people and track them in front of

a cluttered background with a particle filter. Perez et al [85] and Nummiaro et

al [77] proposed a particle filter making use of the colour histograms to track

objects in a robust method. Giebel et al [35] used the multiple cues of shape,

texture, and depth information from the image within a Particle Filter Bayesian

framework, to track using learnt spatio-temporal object shapes in challenging

scenes on single cameras.

Dealing with occlusion can be challenging with a single camera view. Zhao and

Nevatia [115] rectified video frames to a predefined ground plane and modelled

the targets in 3D space with a body shape model. The shape estimate allowed

improved occlusion handling to estimate people in crowds. The tracking operated

in a 2-frame interval, this caused some ambiguities due to the local view of trajec-

tories. By examining the complete trajectory of objects some of these ambiguities

can be resolved. More recently, Wu and Nevatia [111] used multiple body part

detections to cope with minor body occlusions similar to the part-based object

detection and recognition approach proposed by Mikolajczyk et al [69]. Wu com-

bined the body parts with a Bayesian technique and tracked using Mean Shift,

with an occlusion detection. This enables it to track multiple people through

minor occlusions effectively on a single camera.



14 Chapter 2. Background

2.3.2 Multiple Overlapping Cameras

The use of multiple cameras which share a similar field of view was the focus of

some of the earliest work into tracking people across cameras [56] [22]. They in-

herited many of the aspects of single camera systems, and often assume that the

object is visible at all times in at least one camera. This provides a very robust

platform for tracking moving objects, especially within crowds [33]. However, the

requirement of having multiple cameras overlapping each other can be impracti-

cal, with many experiments using over five cameras covering a single room. This

makes the techniques less suitable for real world deployment due to the large

number of cameras required and physical constraints upon their placement.

The use of multiple, wide baseline cameras allows simple occlusion reasoning and

through camera calibration a 3D environment can be built of the scene. This area

has seen significant research and success. Early work by Kelly et al [56] required

both camera calibration and overlapping fields of view. These were needed to

compute the handover of tracked objects between the cameras. Additionally,

Chang [21] created a 3D model of the environment using epipolar geometry, to

allow for the registration of objects across the different overlapping cameras.

Modelling the motion of tracked object during times of occlusion has been achieved

using Kalman filters. Mikic et al [67] found 3D points from projections of points

belonging to binary blobs, and applied a Kalman filter to track objects. Black

et al [13] also used a Kalman filter to estimate the trajectory projection during

occlusion, to simultaneously track in 2D and 3D. Dockstader and Tekalp [28],

Chang [22] overcame occlusion in multiple object tracking by fusing the informa-

tion from multiple cameras. Trivedi et al [104] used a Kalman filter to model the

motion of the tracked target and to determine the optimum camera for tracking

in a multi-camera system.

Orwell et al [81] present a tracking algorithm to track objects using appearance.
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They model the connected blobs obtained from background subtraction using a

colour histogram and then match and track multiple objects. In [80], Orwell

et al present a multi-agent framework for determining whether different agents

are assigned to the same object seen from different cameras. This method would

have problems in the case of partial occlusion where a connected foreground

region does not correspond to one object, but has parts from several of them.

Cai and Aggarwal [20] compute correspondences between multiple cameras to

extend the single view tracking of people. They use a background segmentation

across calibrated video streams to extract human shape. Feature points are then

extracted and tracked in a single view. The system then switches to another view

when the current camera no longer provides a good view of the person’s features.

Occlusion and overlapping people will cause blob based segmentation to fail.

Therefore Figueoa et al [32] split incorrectly formed blobs based upon their pixel

appearance. More recently, Morariu and Camps [72] proposed a method based

on dimensional reduction to learn the correspondence between the appearance

of people across multiple views. This uses the appearance of the person in one

camera to compensate for occlusion of the same person in another view.

Object appearance can be applied as a strong cue in overlapping cameras to main-

tain object identity. Colour based appearance and motion information is used by

Kang et al [54]. They leart the limits of the field of view (FOV) for overlapping

cameras to maximise a joint probability of the 2D and 3D position of individuals.

When a person is visible in one camera, other cameras where the person should

also be visible are examined. Mittal and Davis [4] use observed intensity models

of people to segment images in up to 6 synchronised overlapping cameras. Re-

gions are matched across views using a region-matching stereo algorithm yielding

3D points potentially lying inside objects. These points are projected onto the

ground plane to form an object location likelihood map. Nummiaro et al [76]

use appearance matching from multiple cameras to determine the optimum view
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for tracking an individual. They use multiple models for the target to ensure

robust tracking even when the object appearance changes considerably through

pose changes.

The use of probabilistic occupancy maps has seen some of the most recent and

promising progress. Through the use of a discretised ground plane map of the

cameras field of view, occluded objects are tracked through reasoning. Beymer [11]

detects areas of disparities on stereo images to produce a score map of the likely

location of individuals. A Kalman filter is combined with this to model the mo-

tion of objects. A Visual Hull approach can be used to compute the occupancy

map as proposed by Yang et al [114]. Fleuret et al [33] use the information from

multiple cameras to produce a probabilistic occupancy map based on the dynam-

ics and appearance models of the objects. Dynamic programming is then used to

track the multiple objects through significant occlusion and lighting changes.

2.3.3 Multiple Non-Overlapping Cameras

The use of non-overlapping cameras creates very different problems to overlapping

cameras. The handover of objects between cameras cannot be explicitly observed

and therefore reasoning must be used. However, they are far more flexible in

setup as they do not require overlapping FOV and the physical constraints that

must be applied to satisfy overlapping FOVs. Therefore these techniques have

the greatest real world potential application.

Calibrating the cameras provides increased accuracy and often no additional

learning once the calibration is complete. Although there are disadvantages to

this approach: for example, once the calibration has been completed, should

the system change, a recalibration would be required. In addition, the time to

perform the calibration could increase exponentially as the number of cameras

increase. Kettnaker and Zabih [57] presented a Bayesian solution to tracking
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people across cameras with non-overlapping FOVs. The technique required cal-

ibration, with the user providing a set of inter camera transition probabilities

and their expected duration a priori. This means that the environment and the

way people move within it would need to be initially measured. This would be

a large and exponentially increasing constraint as the number of cameras used

increased. Chilgunde et al [23] track objects across blind regions inter camera

using a Kalman filter. However it is assumed that the ground plane is known

between the cameras.

Probabilistic or statistical methods have recently seen some of the greatest fo-

cus in solving inter camera tracking. They all use the underlying principle that

through accumulating evidence of movement patterns over time, it is likely that

common activities will be discovered. Huang and Russell [42] presented a proba-

bilistic approach to tracking cars on a highway, modelling the colour appearance

and transition times as Gaussian distributions. This approach is very application

specific, using only two calibrated cameras, with vehicles moving in one direc-

tion in a single lane. Javed et al [51] present a more general system by learning

the camera topology and path probabilities of objects using Parzen windows.

This is a supervised learning technique where transition probabilities are learnt

during training using a small number of manually labelled trajectories. Dick and

Brooks [26] use a stochastic transition matrix to describe patterns of motion both

intra and inter camera. The system required an offline training period where a

marker was carried around the environment. This would be infeasible for large

systems and can not adapt to cameras being removed or added ad hoc without

recalibration. For both systems [51, 26], the correspondence between cameras

has to be supplied as calibration data a priori. Pasula et al [84] uses a Markov

Chain Monte Carlo (MCMC) method to identify objects across a multi-camera

network. The MCMC allows for an accurate estimation of the orgin/destination

transition times even when individual links in the sensor chain are unreliable.
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Ivanoxet al [49] hand-coded source and sink models (entry and exit areas on cam-

eras), for use in high level event reasoning. Thus allowing them to differentiate

a person who entered the scene walking verses a person in a car. Shet et al [94]

also hard-code logic into their system to allow it to reason about the identity

of people within a video system. The use of manually labelling information can

provide accurate results, however it is impractical for a larger design.

Stauffer [99] finds the entry and exit points of objects within a camera network

using common paths. KaewTraKulPong and Bowden [52] or Ellis et al [30] do not

require a priori correspondences to be explicitly stated; instead they use the ob-

served motion over time to establish reappearance periods. Ellis learns the links

between cameras, using a large number of observed objects to form reappear-

ance period histograms between the cameras. KaewTraKulPong uses appearance

matching to build up fuzzy histograms of the reappearance period between cam-

eras. This allows a spatio-temporal reappearance period to be modelled. In both

cases batch processing was performed on the data which limits their application

to the real world.

Colour is often used in the matching process. Black et al [12] use a non-uniform

quantisation of the HSV colour space to improve illumination invariance, while

retaining colour detail. KaewTraKulPong and Bowden [52] uses a Consensus-

Colour Conversion of Munsell colour space (CCCM) as proposed by Sturges et

al [102]. This is a coarse quantisation based on human perception and pro-

vides consistent colour representation inter-camera without explicit colour cal-

ibration. Most multi camera surveillance systems assume a common camera

colour response. However, even cameras of the same type will exhibit differ-

ences which can cause significant colour errors. Pre-calibration of the cameras

is normally performed with respect to a single known object, such as the Gre-

tagMacbeth [98] ColorCheckerTMchart with twenty four primary colours used by

Ilie and Welch [44]. Porikli [86] proposes a distance metric and model function
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to evaluate the inter camera colour response. It is based on a correlation matrix

computed from three 1-D quantised RGB colour histograms and a model func-

tion obtained from the minimum cost path traced within the correlation matrix.

Joshi [73] similarly proposes a RGB to RGB transform between images. By using

a 3x3 matrix, inter channel effects can be modelled between the red, green, and

blue components. More recently, Annesley and Orwell [7] model colour variation

between cameras to enforce colour consistency between cameras, using the grey-

world assumption to model the colour variation. This worked well, however, it

was tested within a relatively restricted environment; the work within this thesis

removes the need for some of those restrictions.
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Chapter 3

Methods

This chapter will explain and describe some of the main computer vision methods

used in the later work. There are three, main, low level techniques, used to

identify the foreground, and track foreground objects; an Adaptive Gaussian

Mixture Model background segmentation, Mean Shift and Kalman Filters. each

is now examined in turn.

3.1 Adaptive Background Segmentation

The background segmentation technique used within this thesis is based on

that originally presented by Stauffer and Grimson [100] and extended by Kaew-

TraKulPong and Bowden [16]. The algorithm classifies on a per pixel basis,

whether the pixel belongs to the background model it has formed for each pixel

point. If it does not fit the model, the pixel is classified as foreground. The Stauf-

fer and Grimson algorithm relies on assumptions that the background is visible

more frequently than any foreground and that it has modes with relatively narrow

variance. These assumptions are consistent with scenes in which the background

clutter is generated by more than one surface appearing in the pixel view. The

21
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foreground vs background pixel segmentation is formed using a Gaussian mixture

model on a per pixel basis, so for every pixel there are K Gaussian distributions.

Each Gaussian distribution has a mean µ, a standard deviation σ and a weight

ω. A large value of K provides more robust segmentation, but at the cost of

slow system performance. Three to five Gaussians have been found to provide

sufficiently robust segmentation, while still maintaining real-time performance.

At a given time t, the Gaussian probability density function, η for the kth Gaus-

sian distribution, with a mean µk,t, and covariance Σk,t is given as

η(xt, µk,t, Σk,t) =
1√

2π|Σk,t|
e−

1
2
(xt−µk,t)

T Σ−1
k,t(xt−µk,t) (3.1)

Therefore the overall likelihood that a pixel xt fits this Gaussian is

P (xt) =
K∑

k=1

ωk,t × η(xt, µk,t, Σk,t) (3.2)

where ωk,t is the weight of the distribution, initialised as 1
K

. The weight on each

distribution represents the probability that a colour of the image pixel remains

the same, ie is part of the background.

An online approximation to expectation maximisation is then used to update

the pixel distribution. For a given pixel intensity value xt, it is compared to the

existing distribution model components. A correlation is found if the intensity

is within 3 standard deviations of any Gaussian component. If no correlation is

found to the existing models, the Gaussian distribution with the lowest weight is

replaced by a new one with the value of the pixel as the mean, with a initially

high standard deviation σ0 and a low weight ω0. The matched distributions are

then updated calculating a new mean µ and variance σ2. The mean moves in the

direction of the pixel value and is weighted by the learning rate α.

µk,t = (1− α)µk,t−1 + αxt (3.3)
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σ2
k,t = (1− α)σ2

k,t + αxt (3.4)

The weight of each distribution is updated: the correlated distribution has its

weight increased, and the rest reduced. The learning rate, α, controls the amount

with which the weights are updated. Equation 3.5 is the updated weight for the

correlated distribution

ωk,t = (1− α)ωk,t−1 + α (3.5)

while Equation 3.6 shows the updated weight to the remaining K distributions

ωk,t = (1− α)ωk,t−1 (3.6)

Next a decision is made as to whether the new pixel value is foreground or back-

ground. This is achieved using the equation 3.2 to compute the probability that a

pixel intensity is background. In order to reduce computation all the distributions

are sorted by ω. The distribution that is the most probable background model,

and therefore the most correlated over time, will be matched first and therefore

removes the need to match to the other distributions. Because there are only two

parameters, the learning rate α, and the number of background models K, this

algorithm is very easy to adapt to the environment. The parameter α, adjusts

the speed at which static foreground becomes background and is tuned manually.

As there are multiple distributions, every pixel can be represented by one or more

background colours. In this way, a repetitive dynamically changing background

such as leaves on a tree, can still be classified as background. This will create a

number of probable background models to correlate with the moving background

object. The use of multiple distributions can also remove false positive foreground

detections. These can occur when stationary foreground objects move, causing

a false detection on the pixels previously occupied causing a ghost segmentation.

Using multiple distributions, updating the background does not destroy the exist-

ing background colour model, which will move to a lower weighted distribution.

Thus, if the object moves, the distribution describing the previous background
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still exists (with a lower weighting), and will quickly regain dominance in the

model.

3.2 Mean Shift

Mean Shift is an optimisation technique used for many applications but popular

as an appearance based tracker. The “Mean Shift” is the rate at which the target’s

kernel moves over succesive frames. A kernel is an bounding box covering the area

of interest, in this case a person. The Mean Shift is computed by performing an

iterated localised gradient accent from the target object’s location in the previous

frame. The normalised colour histogram appearance model r of a kernel of a new

object to be tracked is found. To compute distances between the histograms, the

Bhattacharyya distance measure is used. This measure was found to provide the

most consistent intra camera colour correlation in tests in Chapter 4 (Figure 4.8

in Section 4.4.2) and by others [24]. In each new frame, the target moves toward

its most probable position. To do this an algorithm is used that maximizes the

Bhattacharyya coefficient

Bhattacharyya coefficient Maximisation

1. First, for candidate location y0, the current candidate histogram s(y0) will

be computed. After that the Bhattacharyya coefficient between this his-

togram and the model histogram r is evaluated

ρ[s(y0), r] =
m∑

u=1

√
su(y0)ru (3.7)

2. For every pixel a weight is derived

wi =
m∑

u=1

δ[b(xi)− u]

√
ru

su(y0)
(3.8)
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where b(xi) is the bin for the colour of the pixel xi, u is the current bin

and δ is the Kronecker delta function, which is only true if both arguments

are true. This means that every weight is the square root of the value of

the model bin of the pixel colour, divided by the value of the candidate bin

(ignoring empty bins).

3. To derive the new estimated location y1, the Mean Shift is computed as

y1 =

∑n
i=1 xiwi∑n
i=1 wi

(3.9)

then su(y1) can be updated and a Bhattacharyya coefficient between the

new candidate histogram s(y1) and the model histogram r evaluated

ρ[s(y1), r] =
m∑

u=1

√
su(y1)ru (3.10)

4. While ρ[s(y1), r] < ρ[s(y0), r], the target has not yet been reach so the

location of y1 must be updated y1 ← 1
2
(y0 + y1)

5. If ‖y1−y0‖ < ε, the iterations stop, and the target has been found, otherwise

the iteration is restarted at step 1 with a new candidate position: y0 ← y1.

The use of a local search area with iterations allows the Mean Shift technique to

have low computational complexity, while maintaining a good approximation to

the optimal trajectory of the target object’s model.

3.3 Kalman Filter

The Kalman filter is a set of mathematical equations that provides an efficient

computational (recursive) method to estimate the state of a process, in a way that

minimizes the mean of the squared error. It can be used to estimate the state
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position of an tracked object at the current time interval based on measurements

of the object location in previous time intervals.

To estimate the state of some variables X in a system, it is assumed that the

system variables are controlled by equation 3.11

Xt+1 = AXt + nt (3.11)

where nt is random process noise, and A is the state transition matrix, where t is

the time between the time intervals t and t + 1. Equation 3.11 can be expanded

into a four state vector to track an object centroid independently in x and y in

an image 


xt+1

yt+1

dxt+1

dyt+1




=




1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1







xt

yt

dxt

dyt




+




n(x)

n(y)

n(dx)

n(dy)




(3.12)

The measurement z of the x, y location of the object can be represented by sum

of the measurement, l, and measurement noise, v, as shown in equation 3.13

zt = lt + vt (3.13)

The Kalman Filter update and estimation process is be made up of four equations,

where following two statistical conditions are true.

• On average, over time the estimate of the state must equal the true state

value.

• The mean squared error on the estimated state must be minimised.

In order to estimate the next state, first the covariance of innovation S and gain

matrix K are computed in equations 3.14 and 3.15

St = ξt + V (3.14)
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Kt = APtS
−1
t (3.15)

Where the measurement noise is white Gaussian noise with a covariance V , and

ξ is a covariance of the system estimate error. Then in order to estimate the

next state, the prediction error and state estimate is updated in equations 3.16

and 3.17.

Pt+1 = APtA
T + Q− APtS

−1
t PtA

T (3.16)

xt+1 = Axt + Kt(zt − Axt) (3.17)

Q is the covariance matrix of the process noise, while equation 3.17 computes

the new estimated state, it consists of the state at the previous time interval xt

with a difference between the actual measurement zt and previous estimated state

weighted by the gain matrix. These four equations can then be repeated with

t = t + 1, to continue predicting and updating the state of the tracked object.
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Chapter 4

Consistency of Object

Descriptors

This chapter investigates methods to measure the consistency of object appear-

ance for tracking intra and inter camera. For a descriptor to be robust, it

must maintain a high degree of consistency through object illumination and pose

changes within and across cameras.

Appearance is one of the possible cues used to recognise and correlate objects.

It is used in many computer vision tasks including image retrieval, 3D modelling

and tracking. This chapter will explore three factors to consider when using an

appearance based descriptor:

1. The selection of a colour space to represent the pixel intensities,

2. An optimal descriptor quantisation,

3. A correlation measure to discern between descriptors.

The consistency of an object’s appearance is used to assess performance. The

object will have a constant appearance between frames and cameras, however the

29
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illumination and pose changes will affect its appearance descriptor. Therefore

the examination of the consistency of an object’s appearance is used to distin-

guish between the three factors listed above. This will provide a measure of a

technique’s success as an appearance descriptor for an object.

4.1 Object Descriptor

An object descriptor is a container to represent object metadata used later for

identification and correlation. In this chapter the descriptor will be based only

on the object’s colour appearance. Colour will be used as this provides enhanced

discriminative detail over grey-scale. In addition, shape and motion are important

descriptors to distinguish between multiple classes of objects. However, as this

work is concerned with a single class of object i.e, humans, shape, or motion alone

would not provide sufficient discriminatory information.

4.1.1 Localisation of Foreground Objects

To locate an object of interest, Connected Component Analysis is applied to the

foreground pixels formed using the Gaussian Mixture Model method outlined

previously in section 3.1. Connected Component Analysis scans the background

binary mask and groups its pixels into components or blobs based on pixel con-

nectivity. Once all blobs have been determined, the mean and variance of the

connected pixels within the blob is used to produce a rectangular bounding box

kernel centred on each object. A minimum blob size is used as a filter to remove

the small areas of foreground noise and leave only the moving objects of inter-

est with a rectangular kernel as shown in Figure 4.1. To efficiently describe the

appearance of the discrete foreground object, a frequency histogram of the pixel

intensity values is used.
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Figure 4.1: Objects detected by Connected Component Analysis on a image

frame.

4.1.2 Colour Histograms

A measure of similarity to correlate between colours histograms called Histogram

Intersection was first proposed for colour image retrieval by Swain and Bal-

lard [103]. It is a method to model the appearance of an object as a discrete

frequency probability density function. The use of colour within recognition is

a critical perceptual cue. The appearance frequency distribution of an object

is robust to a number of effects including rotation and perspective distortion.

The histogram will vary slowly to changes in viewing angle, scale, and pose and

occlusion of the person [103]. Through quantisation, a degree of invariance to il-

lumination changes can also be introduced. This is especially important for cross

camera tracking where image illumination has large variations as illustrated by

Figure 4.2, which is a picture from an indoor set of cameras.

A colour space is defined by a number of axes (often three), the colour his-

togram is obtained by discretising the pixel intensities of the object’s foreground

bounding kernel and counting the frequency of each discrete colour that occurs in

the area. Thus, the colours in an image are mapped into a discrete colour space

containing m colours. A colour histogram of object I is an n-dimensional vector,
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Figure 4.2: Examples of illumination variation between four close cameras all

with white walls.

where each element represents the frequency of colour b in object I. The colour

histogram model is given as rI = (u1, u2, ..., um). The histogram dimension, m is

determined by the degree of quantisation for a given colour space. The standard

RGB colour space of three axes may be quantized into r, g, and b bins for each

axis. The histogram can then be represented as an n-dimensional vector whose

length is given by the product, m = r ∗ g ∗ b.

4.1.3 Quantisation

The aim of quantisation is to reduce the storage requirements and sensitivity

of the data. The ability of the histogram to model the object’s appearance is

affected by the width of the histogram bins. The bin width, ∆i chosen for the

objects appearance histogram is crucial to the system performance. If only a

small set of samples is available or a large ∆i is used, the model tends to con-

verge to a singular solution. To remove this, the bin size, ∆i can be reduced.

This then leads to another question, how small the bin width should be to rep-

resent the colour distribution of the object. Too small a bin size can result in no

discernible difference between objects. Therefore a measure based on the number
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of samples used to populate the histogram was used to determine the bin size.

The relationships between bin size and sample established by Hadjidemetriou et

al [39] was used. They recommended the number of bins mi = β
∆i

where β is

the total number of possible pixel values (for unquantised RGB 256*256*256), be

proportional to the cube root of the number of samples, Nx.

∆i ∝ 3
√

mx (4.1)

In the following, different widths of ∆i are examined to allow a constant to be

chosen for the later work.

To further reduce the constraints on varying the bin sizes, two further solutions

are possible. One is to use a different colour space that utilises a colour transfor-

mation obtained from consensus colours in the Munsell colour space, into eleven

discrete fixed primary colours. This is explored in section 4.2. The other is to

use a window function to reduce the dependency on the correct histogram bin

size during quantisation, i.e. a Parzen window.

4.1.4 Parzen Windowing

Kernel density estimation (or Parzen windowing, named after Emanuel Parzen [83])

is a way of estimating the probability density function of a random variable. It

superimposes kernel functions on each observation similar to convolution of a

kernel with a observation signal. This enables the quantised histogram to be

more robust to the choice of ∆i as data is spread to multiple bins to minimise

under complete population. The choice of the kernel used is important since it

is conditioning the quality of the estimate. The most popular function is the

gaussian distribution. It has a zero mean and variance σ2, the choice of σ2 is

then very important as well, as this will determine the spread of the observation

and is based on the number of available observations. Dowson and Bowden [29]
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named two types of Parzen Windowing, In-Parzen Windowing and Post-Parzen

Windowing.

In-Parzen Windowing is designed to reduce the effect of different quantisation

levels by convolving each observation ui with the smoothing kernel prior to quan-

tisation then populating multiple bins in the colour histogram. The In-Parzen

window estimate function P (x) is shown in equation 4.2

P (x) =
1

m

m∑
i=1

1

σn

η(
u− ui

σn

) (4.2)

where σ is the bandwidth or standard deviation of the window and is based on

the number of observations or samples m. G(x) is the unimodal kernel window

function such that ∫ −∞

∞
η(x) dx = 1 (4.3)

For this work a 1D Gaussian PDF is used as the kernel, when applying this to

equation 4.2, the In-Parzen window estimate function with a Gaussian kernel

becomes

P (x) =
1

m

m∑
i=1

1

σ
√

2π
exp(−1

2
(
u− ui

σ
)2) (4.4)

Performing In-Parzen Windowing during the histogram construction is compar-

atively expensive as it is dependant on the number of observations m used to

form the histogram, and some loss of information still occurs. However In-Parzen

Windowing is able to reduce much of the problem of over and under fitting data

with an incorrect ∆i, through the blurring of the bins around the actual obser-

vation. To reduce the computational costs of In-Parzen windowing, Post-Parzen

Windowing involves superimposing a kernel with the observations, after all the

observations have been sampled. Again the kernel used is often a Gaussian, how-

ever convolving with the kernel after all observations have been sampled, the

computational cost is not dependant on the number of observations Nx, but the

number of bins. However, it results in a loss of information due to the applica-

tion of the gaussian after the quantisation has taken place, and it is not always
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smooth. Despite these constraints it is still able to be reduce the dependency of

bin size that quantisation introduces.

4.2 Object Colour Space

A colour space can be defined as a model representing different frequencies of light

in terms of intensity values. An object should have a constant appearance, how-

ever the illumination on the object will be constantly changing due to shadows or

lighting. These changes will be detected by a camera and, if not dealt with, will

make tracking or correlating the object appearance impossible. Normalisation

or quantisation of the colour space can provide illumination invariance. For this

work quantisation was used as it also is able to reduce the dimensionality of the

data. Quantisation reduces the total number of unique colours, meaning that

similar colours are labelled as the same. Several colour spaces and quantisation

levels were investigated including the HSV quantisation (8x8x4) approach pro-

posed by Black et al. [12], the Consensus-Colour Conversion of Munsell colour

space, a colour Lookup table (CLUT) [15] and differing levels of traditional RGB

quantisation. These colour space models are only a few of the many other colour

space models available including YUV. They are just some of the more popular

ones.

The HSV colour Model

The HSV (Hue, Saturation, Value) model, defines a colour space in terms of three

constituent components:

• Hue: the colour type (such as red, blue, or yellow). Ranges from 0 → 360.

Each value corresponds to a colour. For example: 0 indicates the colour

red, 120 indicates green, and 240 indicates blue. The primary and secondary
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colours red, yellow, green, cyan, blue, and magenta occur at the vertices of

the hexagons.

• Saturation: this is the intensity of the colour. Ranges from 0 → 1. Where

0 means no colour, 1 means intense saturated bright colour.

• Value: this describes the brightness of the colour. Ranges from 0 → 1, 0 is

always black. Depending on the saturation, 1 may be white or a colour at

its brightest.

Figure 4.3: The HSV colour space represented by a hexagonal cone [2].

Figure 4.3 shows a visualisation of the HSV model as a cone. In this representa-

tion, the hue is depicted as a three-dimensional conical formation of the colour

wheel. The saturation is represented by the distance from the centre of a circular

cross-section of the cone, and the value is the distance from the pointed end of the

cone. This colour space is often used within the computer vision as it is possible

to separate the Hue and Saturation components from the Value component. As

the Value component is the most affected by illumination changes, the overall

histogram can be made more invariant to the illumination changes by increasing

the bin size in this channel. While maintaining discriminatory information about
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the object’s colour in the Hue and Saturation components. A Parzen window

estimation could be applied to the HSV histogram, however it could not be a reg-

ular lattice, due to the conical shape of the colour space. Therefore to correctly

estimate the HSV colour space with Parzen windows a conical gaussian would

need to be applied. While within the RGB colour space a standard gaussian

window kernel can be applied with ease. Therefore the Parzen window functions

are only applied to the RGB colour space.

Conversion of Munsell Colour Space

The Colour Lookup table (CLUT) colour Space is a manually defined colour

space. It utilises a colour transformation obtained from consensus colours in

Munsell colour space [10]. Sturges et al [102] identified consensus areas within

the colour space, where groups of colours were consistently labelled the same each

time they were viewed by humans in a physiological study. Figure 4.4 shows the

areas of colour. This meant it was possible to separate the colour space into

eleven primary discrete colours, which have no overlap and have no other colour

present. Looking at Figure 4.4 it can be seen that they are not linear or uniform

in size or distribution. This means that Parzen windowing cannot be applied

to the data to smooth the quantisation bins. Pixel values not occurring within

a colour label are matched to the closest label using the Mahalanobis distance.

The very coarse quantisation can provide good illumination invariance for object

recognition both intra and inter camera, however it is possible that too much

discriminatory information has been discarded. This could result in correlation

failures between similar objects.
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Figure 4.4: Location of consensus samples and focal colours on a two dimensional

representation of the Munsell space as identified by Sturges et al [102].

The RGB Colour Model

The RGB (Red, Green, and Blue) colour space model is widely used in machine

vision and in many digital-imaging devices. It is an additive colour model, because

it describes what kind of light needs to be emitted to produce a given colour. Light

is added together to create colour ranging from black to white. This colour space

is specified by the chromaticities of its primary colours and its white point. The

RGB system provides fast and simple computation, but it is neither perceptually

uniform nor an intuitive colour space. However it is a linear model allowing for

the use of Parzen windowing to help reduce its dependance on the quantisation

bin size during histograms.

4.3 Similarity Measures

The correlation of objects both inter (between) and intra (within) camera requires

the use of a similarity measure. Four possible techniques to compare the similarity
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of histograms were examined. Given two objects R and S to be correlated, a pair

of normalised appearance frequency histograms will be produced from their fore-

ground appearance within the kernel bounding box taken from the background

mask. These can be represented as f(R) = R(i)i=1...m and f(S) = S(i)i=1...m,

each having m bins.

4.3.1 Histogram Intersection

Swain and Ballard [103] introduced a histogram matching method called His-

togram Intersection. Given a pair of normalised histograms, f(R) and f(S) of

objects I and J. Both histograms consist of m bins and the i-th bin i = 1, ..., m,

is denoted with fi(I) and fi(J) respectively, the histogram intersection of the

normalised histograms is as follows:

ρHI [f(R), f(S)] =
N∑

i=1

min(fi(R), fi(S)) (4.5)

For two objects, the larger the value of the Histogram Intersection, the more

similar the object pair is deemed to be. The technique is easy to use and has low

computational complexity.

4.3.2 Bhattacharyya Coefficient

The Bhattacharyya coefficient [5, 53] is a popular correlation to compute the

similarity of two probability distributions. It measures the separability of the

two classes. The Bhattacharyya coefficient is closely related to the Bayes error

[6]. Calculating the Bhattacharyya coefficient (derived from the Bayes error)

involves integration of the overlap of the two samples.

ρ(R, S) =

∫ √
R(i)S(i) di (4.6)
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where R and S is the colour distribution of the two objects to be correlated. For

discrete probability distributions f(R) and f(S), equation 4.6 can be approxi-

mated as the integral of the scalar product of the two vectors (one for R and one

for S), defined as:

ρ[f(R), f(S)] =
m∑

i=1

√
fi(R)fi(S) (4.7)

The coefficient interval is [0, 1], where a value of 1 is complete correlation, or 0

if there is no correlation at all due to the multiplication by zero in every bin.

For experimental work, due to the discretisation of the continuous probability

density functions into histograms, zeroes do occur, and are replaced by a small

value, 0.0001 due to the use of the square root function.

4.3.3 Mutual Information

The Mutual Information measure [101, 61] is based on the shared information

of the overlapping part of two object’s appearance histograms. This information

is obtained using Shannon entropy [93], known as the measure of uncertainty.

It is used as a similarity metric to measure the mutual dependence between the

two appearance histograms. It uses the joint appearance frequency histogram

between images in addition to the separate appearance histograms. This allows

basic spatial information to be encoded into the metric, while maintaining the

speed and invariance properties of separate histograms.

Given a pair of objects I and J respectively, the Mutual Information MI is the

sum of their entropies H minus their joint entropy.

MI[f(R), f(S)] = HR + HS −HRS (4.8)

Where HR is object R’s Entropy. Entropy is a measure of the average uncertainty

associated with a random variable. It is described by the object appearance in-

tensity i within the kernel box, and the number of pixels in a frequency histogram
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bin fk.

HR = −
m∑

i=1

fi(R)∑
fi(R)

ln
fi(R)∑
fi(R)

(4.9)

While the joint entropy HRS of both objects pixel intensities within their kernel

bounding boxes can be given by;

HRS =
m∑

i=1

m∑
j=1

fij(RS)∑
fij(RS)

ln
fij(RS)∑
fij(RS)

(4.10)

where fij(RS) is the joint probability between the two objects R and S. If objects

R and S are found to be correlated HRS will be smaller than HR + HS.

4.3.4 Chi-square distribution

The chi-square distribution (also chi-squared or χ2 distribution) is widely used

in statistical significance tests. It is used to estimate how closely an observed

distribution or histogram matches an expected distribution, this is often called

the goodness-of-fit test. Chi-square is calculated by finding the difference between

each object’s I and J colour distribution in each histogram bin, squaring them,

dividing each by the object’s J histogram bin frequency, and taking the sum of

the results.

χ2 =
N∑

i=1

(fi(R)− fi(S))2

fi(S)
(4.11)

If fi(S) equals zeros , it is ignored, to not introduce division errors. The lower

the result the more similar the two distributions are.

4.4 Experiments

To examine the colour consistency of the descriptor methods, both intra and inter

camera scenes for the descriptors were examined in detail. This is because the

consistency of colour between consecutive frames is affected by different issues to

that of object appearance consistencies inter camera.
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4.4.1 Data Sequences

Two sets of image sequences were used for the evaluation of the methods. For the

intra camera consistency, it was possible to make use of a popular groundtruthed

data set from the CAVIAR project [1], the benchmarked set used is named “On-

eStopMoreEnter1”. Examples from the dataset are shown in Figure 4.5.

Figure 4.5: A selection of images from the “OneStopMoreEnter1” dataset from

the CAVIAR [1] project.

The dataset is a low resolution fixed camera sequence with on average six people

walking within the camera’s field of view along a shopping centre, for 1123 frames

at a frame rate of 25fps. The people interact and pass one another causing near

total occlusions and pose changes while shadows and reflections are also present.

To examine inter camera object colour consistency there is no suitable publicly

available groundtruthed dataset to use with multiple cameras. Therefore, a new

sequence recorded using 4 non-overlapping cameras was used. The separate cam-

era are multiplexed into a single time-synchronised video stream at a resolution of

320x240. Example frames of the inter camera sequence are shown in Figure 4.6.

The four cameras are cameras 1-4 in the set that are used within the real-time

inter camera people tracker and are described in more detail in Chapter 6.
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Figure 4.6: A selection of images of the inter camera sequence using 4-non over-

lapping cameras.

4.4.2 Object Appearance Consistency intra camera

To examine the consistency of colour between the frames t and t+1, a background

mask is applied to the image and the foreground pixels within a groundtruthed

rectangular kernel are used. These pixels intensities are used with the colour space

and quantisation methods, to form an object descriptor, fR(t) of that person, R

at time t. This is then repeated with all other m individuals visible in the frame.

In the next frame, t+1 the same process is carried out. A true positive correlation

is then computed between the descriptors for each person between frames t and

t+1. This is the true positive similarity value for frame t+1 and is is summarised

in equation 4.12.
1

m

m∑
i=0

ρ[fi(t), fi(t + 1)] (4.12)

In addition to computing the true positive correlation for a frame, the negative

similarity or false positive rate is also computed. If it is excessively high, the

descriptor will not be able to discriminate between true and false correlations ef-

fectively. The false positive rate is computed by finding the similarity between the

query individual’s object descriptor, ft(i) at frame t, and the m other candidates,

at frame t + 1.

1

(m− 1)m

m∑
i=0

m∑
j=0

ρ[fi(t), fi(t + 1)] where i 6= j (4.13)

These two tests are for all frames in the groundtruthed sequences. To analyse the

results, the true positive and false positive values over the sequence were found.



44 Chapter 4. Consistency of Object Descriptors

The minimum, maximum, mean, and standard deviation were computed for each

of the three techniques, colour space, similarity measure and quantisation size.

These computations give a good indication of the compactness of the data and

how close the true positive and false positive results are.

Another tool to measure the separability between the two classes of the true pos-

itive and false positive results is the T-test. The T-test can be used to determine

whether the means are distinct, provided that the underlying distributions can be

assumed to be normal. By using the T-test, which takes into account the spread

of the data as well as the mean, class repeatability t can be found

t =
xT − xC√

σ2
T

nT
+

σ2
C

nC

(4.14)

The higher the value of t, the greater the degree of class separability.

Parzen Windowing Intra camera

The initial experiments examined the effect of Parzen windows with increasing

histogram bin size on the colour consistency of objects being tracked intra camera.

The RGB colour space with histogram intersection for the measure of similarity

were used. The appearance histogram had four different bin quantisation sizes;

3x3x3, 5x5x5 , 20x20x20, and 50x50x50. The Parzen window was fixed at 3x3x3.

A large range of sizes was used to evaluate the ability of the techniques to cope

with possible large variations in bin size.

Figure 4.7(a,c,e) shows the Histogram Intersection values through the video se-

quence for the true positive rate. It can be seen that In-Parzen windowing in

Figure 4.7(b) performs the best with little difference between 3 and 5 bin sizes,

while the distance to 20 and 50 bins is also lessened compared to no Parzen win-

dowing (Figure 4.7(a)) and Post-Parzen windowing (Figure 4.7(e)). To examine

this further a table of the minimum, maximum, mean, standard deviation, and
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Figure 4.7: The Histogram Intersection for both true positive and false positive

results for varying bin sizes using different methods on intra camera data. (a,c,e)

show true positive results, for NON-Parzen windowing, In-Parzen windowing and

Post-Parzen windowing respectively. (b,d,f) show the results of false positive ex-

amples using NON-Parzen windowing, In-Parzen windowing, Post-Parzen win-

dowing respectively.
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Table 4.1: Table of statical measures of the true positive results and negative

results, from comparing the affect of bin size on, using a In-Parzen window, Post-

Parzen window, and no Parzen window on intra camera data.

Stat No-Parz Positive Results No-Parz Negative Results

Bin Size 3x3x3 5x5x5 20x20x20 50x50x50 3x3x3 5x5x5 20x20x20 50x50x50

Min 0.806 0.778 0.632 0.431 0.011 0.008 0.002 0.000

Max 1.000 0.999 0.998 0.997 0.147 0.118 0.089 0.063

Mean 0.968 0.935 0.795 0.583 0.048 0.036 0.020 0.010

S.D 0.018 0.025 0.065 0.127 0.030 0.021 0.015 0.010

T-test 141 141 91 108 n/a n/a n/a n/a

IN-Parz Positive Results IN-Parz Negative Results

Bin Size 3x3x3 5x5x5 20x20x20 50x50x50 3x3x3 5x5x5 20x20x20 50x50x50

Min 0.833 0.735 0.678 0.586 0.013 0.002 0.005 0.002

Max 1.000 1.000 0.995 0.998 0.199 0.196 0.115 0.088

Mean 0.996 0.986 0.914 0.740 0.088 0.057 0.030 0.019

S.D 0.012 0.017 0.031 0.081 0.040 0.049 0.020 0.014

T-test 133 121 131 78 n/a n/a n/a n/a

POST-Parz Positive Results POST-Parz Negative Results

Bin Size 3x3x3 5x5x5 20x20x20 50x50x50 3x3x3 5x5x5 20x20x20 50x50x50

Min 0.807 0.785 0.677 0.364 0.011 0.008 0.004 0.001

Max 1.000 0.999 0.998 0.971 0.148 0.127 0.098 0.069

Mean 0.970 0.941 0.837 0.632 0.048 0.098 0.025 0.013

S.D 0.018 0.023 0.053 0.101 0.029 0.022 0.016 0.010

T-test 143 133 104 62 n/a n/a n/a n/a
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the T-test of each method with each possible bin size is shown in table 4.4. As all

the data are true positives, the Histogram Intersection should return a mean value

of 1.000. However, as the bin quantisation size increases, the mean value over all

the frames decreases. Thus, it makes it harder to differentiate between true and

false positives. It can be seen that all techniques have a relatively high mean for

both 3 and 5 bin quantisation levels. However, at a quantisation of 20x20x20,

the mean histogram intersection without a Parzen window is only 0.795, a drop

of 0.173 from the 3 bin level. With In-Parzen windowing, the mean is still high

at 0.914, with a much smaller reduction of only 0.082. This lower reduction will

mean that the bin size will have less effect on the performance of colour similar-

ity intra camera if In-Parzen windowing is applied to the appearance histogram.

Looking at the T-test, results for class separability between the true positive and

false positive, it can be seen that the In-Parzen window maintains the highest

values at the 20 and 50 bin sizes, therefore maintaining a distinction between the

true and negative results.

Colour space Intra camera

The use of different colour spaces to represent the data on the sequence can have

a large effect on the consistency of the object’s colour intra camera. Three dif-

ferent colour spaces were investigated for use as the descriptor for object appear-

ance intra camera. The HSV (Hue, Saturation, Value) model with quantisation

(8x8x4), the colour Lookup table colour space (CLUT) [102][15] and traditional

RGB quantisation (5x5x5) constructed with a In-Parzen windowing function ap-

plied.

Figure 4.8(a) shows the Histogram Intersection values through the video sequence

for different colour models of the true positive rate. It can be seen that both

the CLUT colour space and RGB quantisation have a similar performance over

the sequence, with a lower performance for the HSV model intra camera. This
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Figure 4.8: The Histogram Intersection for both true positive and false positive

results for different colour models on intra camera data. (a) shows true positive

results, for the three colour models (b) shows the false positive results for the

colour models.

reduction in performance for HSV is partly due to the lack of a Parzen Window.

Figure 4.8(b) shows the false positive rate over the sequence. The CLUT colour

space has the highest false positive rate, with HSV the lowest, there is a trade off

in performance due to less class separability. Figure 4.9 plots the true positive

rate against the false positive rate with the ideal being the upper left corner.

From this figure, it can be seen that all models have a degree of variance, with

CLUT having the largest spread, while both the RGB and HSV results are more

tightly centred. The T-test measure was used to compute the separability of the

two classes, this is shown in table 4.2. It can be seen that the CLUT and RGB

model have higher degree of separability partly due to the lower variance on the

positive results from the ir higher T-test values.

In table 4.2, the mean and standard deviation is shown, and the CLUT colour

space has the lowest standard deviation and highest mean for the true positive

rate. However, as it has a lower T-test value, inter class separability is reduced.

The lower computational cost similarity of results make the CLUT the best can-
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Figure 4.9: A Graph to show the true positive rate (y axis) against the false

positive rate (x axis) for different colour models on intra camera data.

Table 4.2: Table of statical measures of the true positive results and negative

results, comparing different colour spaces on intra camera data.

Stat Positive Results Negative Results

Bin Size HSV CLUT RGB HSV CLUT RGB

Min 0.640 0.808 0.785 0.004 0.021 0.008

Max 0.999 0.999 0.999 0.093 0.140 0.127

Mean 0.821 0.964 0.941 0.022 0.051 0.038

S.D 0.057 0.019 0.023 0.014 0.024 0.022

T-test 100 148 143 n/a n/a n/a
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didate to provide consistent object representation intra camera for a real time

system.

Similarity Measures Intra camera

The measure of similarity between object appearance has a large effect on the

performance of a system. Four different measures were examined, Histogram

Intersection is a simple fast technique which provides a measure of similarity be-

tween histograms. The Bhattacharyya coefficient measures the degree of class

separability. Mutual Information has basic spatial information encoded within

the measure due to the joint probability, and Chi-square measures dissimilarly.

The appearance histogram of the object was quantised using In-Parzen window-

ing into a 5x5x5 RGB colour space, with each similarity measure compared in

Figure 4.10. It can be seen that the Bhattacharyya measure performs the most

Figure 4.10: The Histogram Intersection for both true positive and negative

results for different similarity measures on intra camera data. (a) shows true

positive results, for the three colour models (b) shows negative results for the

colour models.

consistently through the sequence, while the chi-square test and Mutual Infor-
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Table 4.3: Table of statical measures of the true positive results and negative

results, comparing different similarly measures.

Stat Positive Results Negative Results

Bin Size HI Bhatt MI Chi HI Bhatt MI Chi

Min 0.785 0.828 0.691 0.743 0.008 0.013 0.051 0.012

Max 0.999 0.999 0.996 0.997 0.127 0.172 0.200 0.191

Mean 0.941 0.991 0.921 0.908 0.038 0.059 0.109 0.072

S.D 0.023 0.014 0.037 0.030 0.022 0.030 0.023 0.029

T-test 143 149 111 121 n/a n/a n/a n/a

mation perform the worst. To investigate this further, the statical measures of

the four techniques were examined in table 4.6. It can be seen that the Bhat-

tacharyya coefficient measure has the lowest true positive standard deviation, and

highest mean. However it also has a large standard deviation in the negative or

false positive results. This is illustrated by Figure 4.11, where the Bhattacharyya

results have a larger spread than Histogram Intersection. Despite this variance,

the Bhattacharyya distance is the highest performing similarity measure, with

the highest class separability and consistent true positive mean and therefore the

best T-test score.

4.4.3 Object Appearance Consistency inter camera

To track the objects as they move inter camera, they are identified as an object

of interest using the background segmentation mask. The person is then tracked

with a dynamics model provided by a Kalman filter. They are continually tracked

until they exit the camera’s field of view. The appearance histogram of each

individual is formed from the median appearance descriptor over the tracked
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Figure 4.11: A Graph to show the true positive rate (y axis) against the false

positive rate (x axis) for different similarity measures on intra camera data. (Note

different axis scales)

frames. A median histogram is where each bin is found by taking the median value

of that bin over the person’s trajectory. After collecting all data it was manually

groundtruthed to match tracks of the same person on the other cameras, and these

became the true positive similarity matches. The negative, false positive matches

were five other tracks taken at random from all the groundtruthed entries. The

consistency of an objects appearance inter camera will depend on a number of

different factors. The ability to cope with illumination and pose changes becomes

far greater, and the need for good class separability illustrated through the T-test

becomes important.

To examine the colour consistency inter camera, the dataset taken from the four

non-overlapping camera setup was used. This contained 150 people tracked inter

camera over a four hour period. The three different categories of techniques

examined in the intra camera work were used again.
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Parzen Windowing Inter Camera

The effect of increasing bin size on object colour consistency is examined. This is

more challenging than tracking intra camera, as the illumination and the camera

angle of the person will be dramatically different. Parzen windowing will partly

reduce the effect of the illumination changes by expanding and spreading the

quantised pixel values, to cover surrounding bins. This enables small illumination

changes to be “coped with” efficiently. Four different bin sizes were examined

3x3x3, 5x5x5, 10x10x10, and 20x20x20, the appearance of objects inter camera

was quantised into these bins using one of three techniques, In-Parzen windowing,

Post-Parzen windowing and no-Parzen windowing. Figure 4.12 shows the results

for varying bin size and quantisation techniques.

Looking at Figure 4.12(a,c,e) it can be seen that the overall performance is

less compared to the intra camera work, with most values below 0.9 despite

all comparisons being for the same person. Looking at the true positive value of

Histogram Intersection for the people without a Parzen window, shown in Fig-

ure 4.12(a), it can be seen that some matches have a very low similarity measure

of below 0.4. However, when In-Parzen windowing is applied during histogram

construction as in Figure 4.12(c), two effects are seen. The first is that as the bin

size of the histogram quantisation is increased, there is little performance degra-

dation. This was expected and is similar to the results with the intra camera work

in Figure 4.7(c). However, the overall performance of the matching is improved

over Figure 4.12(a). These two improvements are due to the use of the kernel

to smooth the data and thus ensure the quantised bins are not over or under

filled. It also introduces variance to the data through the kernel function, thus

allowing it to cope with the illumination variations in the appearance histograms.

To examine this further, a table of the minimum, maximum, mean and standard

deviation of each method with each possible bin size is shown in table 4.4.
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Figure 4.12: The Histogram Intersection for both true positive and negative

results for varying bin sizes using different methods inter camera. (a,c,e) shows

true positive results, for NON-Parzen windowing, In-Parzen windowing and Post-

Parzen windowing repetitively. (b,d,f) shows the results of varying bin size of

the negative examples using NON-Parzen windowing, In-Parzen windowing and

Post-Parzen windowing respectively.



4.4. Experiments 55

Table 4.4: Table of statical measures of the true positive results and negative

results, from comparing the affect of bin size on, using a In-Parzen window, Post-

Parzen window, and none for inter camera objects.

Stat No-Parz Positive Results No-Parz Negative Results

Bin Size 3x3x3 5x5x5 10x10x10 20x20x20 3x3x3 5x5x5 10x10x10 20x20x20

Min 0.443 0.290 0.288 0.285 0.102 0.066 0.043 0.046

Max 0.985 0.965 0.941 0.928 0.284 0.253 0.220 0.218

Mean 0.785 0.771 0.619 0.593 0.219 0.178 0.154 0.153

S.D 0.105 0.132 0.136 0.139 0.036 0.035 0.033 0.034

T-test 51 49 38 35 n/a n/a n/a n/a

In-Parz Positive Results In-Parz Negative Results

Bin Size 3x3x3 5x5x5 10x10x10 20x20x20 3x3x3 5x5x5 10x10x10 20x20x20

Min 0.618 0.541 0.493 0.469 0.211 0.176 0.165 0.142

Max 0.942 0.925 0.910 0.901 0.309 0.296 0.288 0.280

Mean 0.840 0.802 0.780 0.765 0.267 0.249 0.240 0.235

S.D 0.076 0.088 0.095 0.100 0.020 0.022 0.025 0.025

T-test 62 56 53 50 n/a n/a n/a n/a

Post-Parz Positive Results Post-Parz Negative Results

Bin Size 3x3x3 5x5x5 10x10x10 20x20x20 3x3x3 5x5x5 10x10x10 20x20x20

Min 0.688 0.410 0.346 0.273 0.266 0.122 0.103 0.061

Max 0.800 0.799 0.798 0.955 0.333 0.326 0.325 0.241

Mean 0.786 0.737 0.718 0.605 0.324 0.285 0.275 0.157

S.D 0.017 0.069 0.078 0.148 0.011 0.040 0.043 0.038

T-test 93 46 43 35 n/a n/a n/a n/a
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Comparing In-Parzen windowing with both the Post and non- Parzen window-

ing methods across the quantisation bin sizes, it can be seen that the In-Parzen

windowing provides a more consistent mean for increasing bin sizes in both true

positive and false positive results. Using a Post-Parzen window on the appear-

ance histogram improves the colour consistency compared to no window function,

at the lower bin sizes of 3,5 and 10. However, when the 20x20x20 appearance his-

togram is used, it starts to fail in a similar nature to the Non-Parzen windowing

method due to the fixed size Parzen window kernel.

Colour spaces Inter Camera

The choice of colour space can effect the performance of inter camera object

correlation. This is excentuated as correlation assumes camera colour consistency.

However, inter-camera, this is often corrupted due to the illumination differences

of the cameras. Therefore, the method best suited to inter camera correlation

will be able to compensate for varying camera colour responses. The same three

colour spaces investigated perviously were used. The HSV (Hue, Saturation,

Value) model with the quantisation (8x8x4), the CLUT colour space [102][15]

and traditional RGB quantisation (5x5x5) with an In-Parzen window kernel.

Figure 4.13(a) shows the true positive rate of Histogram Intersection for different

colour models. It can be seen that both the HSV and RGB quantisation have a

similar performance over the tracked objects, with the CLUT colour space hav-

ing a more erratic performance. The erratic performance is likely to be caused

by the small dimensionality of the colour space causing some correlations to be

underfitted and therefore matching well to many incorrect objects. However, Fig-

ure 4.13(b) shows the false positive rate with the CLUT colour space demonstrat-

ing the lowest false positive. Figure 4.14 plots the colour space’s true positive

rate against the false positive rate with the ideal being the upper left corner.

Looking at this figure, it can be seen that the CLUT model has a larger degree
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Figure 4.13: The Histogram Intersection for both true positive and negative

results for different colour models for matching objects inter camera. (a) shows

true positive results, for the three colour models (b) shows negative results for

the colour models.

of variance however is closer to the ideal. While the HSV and RGB models have

tighter distributions but a higher false positive rate.

To further examine these results, a table of statical summary is shown in Table 4.5.

In this table, it is shown that despite the large standard deviation of the CLUT

method, it has a comparable mean to that of the RGB and HSV models, while

its much lower false positive mean, makes it an attractive colour space for inter

camera tracking of objects.

Similarity Measures Inter Camera

As with the intra camera investigation the four similarity measures were exam-

ined, Histogram Intersection, the Bhattacharyya coefficient, chi-square and Mu-

tual Information. The appearance histogram of the object was quantised using

In-Parzen windowing into a 5x5x5 RGB colour space, and each similarity measure

compared with both the true positive and false positive results. Figure 4.15 shows



58 Chapter 4. Consistency of Object Descriptors

Figure 4.14: A Graph to show the true positive rate (y axis) against the false

positive rate (x axis) for different colour models on inter camera data.

Table 4.5: Table of statical measures of the true positive results and negative

results, comparing different colour spaces.

Stat Positive Results Negative Results

Bin Size HSV CLUT RGB HSV CLUT RGB

Min 0.618 0.354 0.541 0.211 0.045 0.176

Max 0.942 0.999 0.925 0.309 0.264 0.296

Mean 0.839 0.792 0.801 0.267 0.166 0.249

S.D 0.077 0.166 0.088 0.020 0.050 0.022

T-test 52 45 55 n/a n/a n/a
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the results for the groundtruthed objects that were tracked inter camera. It can

Figure 4.15: The Histogram Intersection for both true positive and negative

results for different similarity measures for correlating objects inter camera. (a)

shows true positive results, for the three similarity measures (b) shows negative

results for the similarity measures.

be seen that with the true positive results in Figure 4.15(a), the Bhattacharyya

has consistently high results, while Histogram Intersection,chi-square and Mutual

Information failed for some of the tracked people. However, in Figure 4.15(b),

the Bhattacharyya measure has a high false positive rate which could cause a

degree of confusion between true and false positive identification of objects. In

the statical summary of Table 4.6, the T-Test result for the Bhattacharyya mea-

sure shows that the degree of class separation between the true positive and false

positive results is significatnly higher than the three other similarity measures.

The Bhattacharyya measure gives a higher degree of class separation between the

true and false positive results and greater overall true positive performance on

the inter camera tracking people. In addition, the technique is simple and low

cost in terms of computation, making it idea for both on and offline processes.
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Table 4.6: Table of statical measures of the true positive results and negative

results, comparing different similarly measures inter camera.

Stat Positive Results Negative Results

Bin Size HI Bhatt MI Chi HI Bhatt MI Chi

Min 0.541 0.807 0.443 0.440 0.176 0.255 0.102 0.081

Max 0.925 0.991 0.985 0.998 0.296 0.330 0.284 0.400

Mean 0.801 0.949 0.784 0.746 0.249 0.308 0.219 0.280

S.D 0.088 0.041 0.104 0.122 0.022 0.012 0.036 0.073

T-test 56 93 51 48 n/a n/a n/a n/a

Figure 4.16: A Graph to show the true positive rate (y axis) against the false

positive rate (x axis) for different colour models for inter camera data.
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4.5 Conclusion

In total, six different investigations were performed to find the technique that

gives the most consistent colour descriptor both intra and inter camera. Intra

camera consistency is generally much easier as, between consecutive frames, there

will be little variation in the appearance of the object and camera colour response

is not an issue. However, at times of occlusion and during lighting changes due

to shadows, the descriptor must compensate. The optimum histogram bin size is

related to the number of samples. Therefore, an In-Parzen windowing function

is applied to the data when forming the histogram. The reduction of perfor-

mance as the bin size increases is greatly reduced for both intra and inter camera

objects if this is done. The colour space in which the histogram is formed is

important and from the results, the CLUT model had a high performance intra

camera. For the inter camera all three colour spaces perform around the same

level with similar class separation for their T-tests. However, it should be noted

that both the HSV and CLUT models are not using Parzen windowing to achieve

this, with far lower computation. Therefore the use of CLUT is advisable as it

has the lowest cost with a similar performance to other colour spaces. The opti-

mal measure of similarity to determine the correlation between histograms is the

Bhattacharyya coefficient for both the intra camera in Figure 4.10(a) and inter

camera in Figure 4.15(a). As it performs consistently better than Histogram In-

tersection, Chi-Square and Mutual Information at providing a consistent colour

measure between frames, (intra camera), and across cameras, (inter camera).

This Section has examined the problem of providing a consistent appearance

of objects moving both intra and inter camera. The use of the CLUT, with its

arbitrary clustering of pixel values based on human perception, provides high per-

formance with a low cost. The use of the Bhattacharyya coefficient measure is the
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most consistent at providing correlation between object’s appearance histograms.

However, if computational complexity is not a constraint, RGB quantisation with

a Parzen window can provide a greater level of discrimative detail to maintain

the identity of objects inter camera. These conclusions have been found through

extensive testing on people tracked both intra and inter camera and shall inform

the selection of techniques chosen in later sections.
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Tracking within crowded scenes

This chapter presents a solution to the problem of tracking people within crowded

scenes. The aim is to maintain individual object identity through a crowd which

contains complex interactions and heavy occlusions. In order to track multiple

objects each object must be located and their identity labelled. An object’s

identity is simple to maintain when the tracked object is isolated. However, if

interaction with other objects occurs, the identity can be lost or confused.

The approach uses the strengths of two separate methods; a global object detector

and a localised frame-by-frame tracker. This is enhanced through the use of two

priors learnt from the video scene during low activity periods, firstly, a temporal

model of detections, to remove false positive detections. Secondly, the optical

flow relationship of a moving person is learnt to provide increased accuracy of

overlapping objects when tracking within occlusions.

A single camera with no explicit colour or environmental ground plane calibra-

tion is used. Results are compared to a standard tracking method and the

groundtruth. Four different video sequences including two sequences from the

CAVIAR dataset [1] are used to demonstrate the approach. They are all very

challenging with low quality footage containing interactions, overlaps and occlu-

63



64 Chapter 5. Tracking within crowded scenes

sions between people. The results show that this technique performs better that

a standard tracking method and can cope with challenging occlusions and group

interactions.

5.1 Summary of the Algorithm

Multi-target tracking is a multiple stage process and is illustrated in Figure 5.1.

Initially, a head and shoulders detector is applied to every frame to provide “seed”

Figure 5.1: Simple Illustration of the stages in the tracking process

positions of visible individuals as shown in Figure 5.1a. The seed position is

extended to cover the whole body using weak heuristics as shown in Figure 5.1b.

Each seed (or body as in the image) is represented as an appearance model that

is tracked locally over consecutive frames using a Mean Shift based appearance

tracker to provide a short tracklet within the sequence (as shown in Figure 5.1c).

When the appearance of the object of interest has changed significantly to the

original, the tracklet is terminated. For a person walking through a scene, it is

possible that they will have multiple head and shoulder detections for each frame.

This will result is many short tracklets being formed, with each tracklet being split

into its individual frame by frame tracks as shown in Figure 5.1d. A Viterbi style

dynamic programming algorithm is used to find the optimum path through the

frame-by-frame tracks based on a motion and appearance model. To reduce and

remove unnecessary tracks, a model of the frame-by-frame spatial reappearance
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of head and shoulders detections is used to remove inconsistent detections. The

lowest cost path through the sequence indicates the trajectory for each person.

5.2 Detecting Objects

In a crowded scene with overlapping people, traditional techniques such as a

blob-based background segmentation give disappointing results. This is because

blob based techniques require a clear separation between different object/ peo-

ple. In addition, when people overlap or interact, much of the body outline is

occluded. However, with the recording camera positioned above head height, as

is often the case, the head and shoulders or upper torso are often visible even

within a crowd. Therefore, a head and shoulder detector is used to produce seed

locations of objects to be tracked. The detector is based on the one presented

by Mikolajczyk et al [68]. The recognition technique uses a part based detector.

Simple features are made up of local dominant orientations in the pixel’s local

neighbourhood. Figure 5.2(a) shows an example of the local features, with every

three neighbouring orientations in a horizontal direction and a vertical direction

being grouped as one. The locations are then quantised into a grid as shown

in Figure 5.2(c) to form the features. During the learning process, the selected

features from the object classes are represented in a single tree structure. The

features are clustered with a method that produces a hierarchical tree of clusters.

Figure 5.3(a) illustrates the tree representation, while Figure 5.3(b) shows the

use of a feature codebook. The codebook is a list of all possible features, which

are then accessible to multiple tree nodes. This allows both the motorcycle and

push bike to use the same circular features, in conjunction with other unique

features. The use of a hierarchical clustering allows for increased computation

efficiency, while being robust to minor occlusions of the individual features of

the object. A detector trained to detect faces would be unsuitable as faces are
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Figure 5.2: Local features; (a) Two groups of local orientations, (b) Location of

features on object, (c) A grid of quantised locations

Figure 5.3: (a) Hierarchical structure. (b) Codebook representation. Appear-

ance clusters (left column) and their geometric distributions for different object

classes. [68]
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often not looking directly at the camera, and thus would cause a false negative.

Likewise, a full body detector would be unsuitable as parts of the body are often

heavily occluded. An example frame from a sequence where a face or full body

detector would fail due to people facing away from the camera and occluded is

shown in Figure 5.4

Figure 5.4: This shows a frame in a sequence showing the main head and shoulder

detections. Note there are both true positive and false positive detections.

In order to train the detector, 1200 head and shoulder examples were manually

segmented from images from the internet. The examples contained centred people

facing in all directions with respect to the camera as shown in Figure 5.5. In clas-

Figure 5.5: Positive training examples for the head and shoulder detector

sification, each detection has a confidence value. If the confidence value is greater
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than a threshold, the detection is used. To define this threshold, two unseen se-

quences of groups of people had their body outline manually groundtruthed. The

detector was applied to the two sequences, and the confidence value threshold of

a detection was varied, producing a ROC curve. Figure 5.6 shows the response

by the detector to the video sequences, the threshold to give 400 false positives is

used in the detector. The chosen threshold gives a higher false positive rate than

is usual within the object recognition and classification field. This allows for a

Figure 5.6: This shows an ROC curve for the head and shoulder detector used

with the sequence of a crowded scene

greater number of detections for the harder objects such as people walking away

from the camera or those who have a large proportion of their outline occluded.

These false positive detections will be identified as outliers to the motion and

appearance models, and later discarded. Each head and shoulder detection has

a rectangular kernel that is centred on the detection. The height of the kernel

is then used as a weak heuristic to estimate the total size of the person to cover

their whole body.
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5.3 Learning Models of Motion

When people move within a cameras field of view they often take similar routes

to reach a door or avoid fixed obstacles, this means people will move in similar

motion patterns on individual cameras over time. This key observation can be

exploited to learn during periods of low activity when tracking is simpler and

use this during busy periods to help disambiguate. There are two priors that are

learnt during these low activity periods.

5.3.1 Learning Head and Shoulder Detection Relation-

ships

The head and shoulder detector produces a large number of false positive detec-

tions, these produce Mean Shift tracklets that can corrupt tracking. Therefore

a method to identify the false positive detections is used, allowing false tracklets

to be ignored. A single model of detection over time and space is learnt for each

camera viewpoint. This can be used to predict future head and shoulder posi-

tions and therefore ignore false positive detections based upon their likelihood of

fitting the model.

A one hour sequence of video was used to learn the relationship. For each se-

quence, each detection is compared to all previous detections with respect to

the time elapsed and the x, y pixel difference to the original detection. A pdf in

dx, dy, dy is then incremented with a In-Parzen window blur for each possible pair

of detections. For a set of W head and shoulder detections Dε{D(1), ...D(W )},
equation 5.1 computes the frequency of bins in the histogram representing the
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reappearance of head and shoulder detections.

fxy =
W∑

S=1

W∑
R=1

η((Dx(S)−Dx(R), Dy(S)−Dy(R), t(S)− t(R)), Iσ2)

where 0 ≤ (t(S)− t(R)) < T

(5.1)

Where D(R) is the current head and shoulder detection and D(S) is a previous

detection. Dx(S) − Dx(R) and Dy(S) − Dy(R) are the difference in position

in both x and y respectively between detections S and R. t is the time of the

detection, with T set as a maximum reappearance period to limit the temporal

length of the prior, this is commonly 100 frames. η(V ε<3, Iσ2) represents a

3D gaussian kernel positioned at V with spherical co-variance σ2. An elliptical

co-variance in time could also have been used, this would allow independence

between time and space, however it was found to not be required. This process is

then repeated for all other detections in the sequence, forming a model of the head

and shoulder detections over time. Given a head and shoulder detection D(R)

its prior reappearance probability over time can be modelled by equation 5.2

p(Dt(S)|D(R)) =
f

R|S
t

W 2
(5.2)

Figure 5.7 shows the reappearance probability of a detection p(Dt(S)|D(R))

where (a) t = 5 frames and (b) t = 100 frames. The centre of the likelihood

image is where the original detection occurred. Notice how this encodes domain

knowledge for the camera, as the slight diagonal trend corresponds to the off

centre placement of the camera and therefore the trend for people to move diag-

onally. By 100 frames there is a more dispersed distribution, this is due to the

increased uncertainty of predicting further into the future.
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Figure 5.7: Figure (a) shows the conditional probability of a head and shoulder

detection given a detection occurred 5 frames ago in the centre. Figure (b) shows

the conditional probability of a new head and shoulder detection given a detection

occurred 100 frames ago in the centre.

5.3.2 Optical Flow Accuracy Prior

Another problem occurs when objects occlude each other. While overall tracking

is robust to this, the occlusion can cause the Mean Shift tracker to be centred

in-correctly on the two objects. This means the overall accuracy of the tracker

is reduced. To improve this, the optical flow of the pixels is used. Optical flow

can be applied to the consecutive frames of a person moving through the image.

Optical flow is an approximation of the local image motion based upon local

derivatives in a given sequence of images. It specifies how much each image

pixel moves between adjacent images. The basic assumption for the optical flow

calculation is that of the conservation of pixel intensity. It is assumed that the

intensity, or colour, of the objects has not changed significantly between the two

frames. The Lucas-Kanade method [63] is used for computing the pixel based

optical flow. Figure 5.8 shows the optical flow field of the foreground area of

the head and shoulders of a person from the CAVIAR dataset walking away

from the camera. Despite the poor quality compressed image making the optical
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Figure 5.8: The Optical Flow field of a tracked person

flow field noisy, the largest vectors are generally around the edge of the person,

while within the person the optical flow vectors have a smaller magnitude. In

addition, the direction of the vectors around the edges is in the same direction

as the tracked object’s global motion (in Figure 5.8 this is upwards). If two or

more people overlap, the optical flow can be used to identify the ownership of the

pixels. In addition to being used to resolve overlapping objects, it can also be

used to optimise the bounding box of tracked people, when the bounding box of

person is poorly centred on the actual object of interest. This is often due to the

head and shoulder detector location, the scale not being optimal, or the Mean

Shift tracker drifting.

Learning the pixel motion model

A model of the pixel motion within an objects bounding box is learnt to aid pixel

labelling when objects overlap. Each pixel within the fixed size bounding box

has a 2D histogram. The 2D histogram is the velocity probability of optical flow

for each pixel. During the training phase, when the head and shoulder detector

relationship prior described in the previous section is learnt, optical flow is applied

to each frame. To remove noise from the optical flow image, the background



5.4. Forming Object Tracks 73

segmentation mask is used to segment only the foreground pixels. The optical

flow of an objects foreground pixels within this bounding box region is found with

respect to the previous frame and the bounding box of the object is normalised

to a predefined size.

For each pixel within the normalised bounding box, the pixel’s optical flow value

is quantised and added to the 2D histogram of the optical flow at that pixel

point. An In-Parzen window blur is applied to reduce quantisation effects. This

is repeated with all foreground pixels in the object’s bounding box.

The process is repeated for all other head and shoulder bounding boxes. Over

the sequence, a generic prior will be learnt from the optical flow. Figure 5.9

shows images of the resulting likelihood model of 2D histograms representing

the Optical Flow. Figure 5.9(a) shows the overall bounding box with each pixel

having a separate 2D probability of optical flow for that pixel. It can be seen

that the foreground region of a person is learnt. Figure 5.9(b) and (c) show

enlarged parts of (a), with each separate 2D histogram enlarged. Figure 5.9(d)

shows a single 2D histogram, that corresponds to a single pixel within the overall

bounding box, together with the axis limits.

5.4 Forming Object Tracks

The tracking system takes all the head and shoulder detection locations, with the

aim of extending their trajectory further through the sequence. The area within

the object’s kernel is used to form an m bin histogram appearance model, qu

where u = 1...m . The object’s movement over the sequence is tracked over time

using a Mean Shift tracker with Kalman Filter prediction to initialise the Mean

Shift tracker on a frame-by-frame basis.
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Figure 5.9: The learnt likelihood model of the optical flow of Optical Flow field,

with a zoomed area around the head region
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5.4.1 Kalman Filter Prediction with Mean Shift

A Kalman Filter is used in conjunction with the Mean Shift utilising the assump-

tion that over time people walk with a constant velocity. This allows dynamics to

be introduced to the Mean Shift which otherwise only optimises tracking based

upon the local moment of a colour distribution. A constant-velocity model with

a white noise drift is assumed for the Kalman Filter. For details, Section 3.3 in

Chapter 3 provides more detail about the update equations. For a new frame,

the Kalman Filter will predict the centre of each objects’s kernel. This area is

then used by the Mean Shift as the initial search region for the object. The Mean

Shift will then optimise this prediction through iterations of the Mean Shift pro-

cedure until convergence. The object’s Kalman Filter is then corrected with the

converged Mean Shift measurement. This correction is then used by the object’s

Kalman Filter to predict the position of the object’s kernel on the following frame

which is used again as the Mean Shift search region. For an in depth discussion

of Mean Shift see Section 3.2 in Chapter 3

5.4.2 Track Termination Criteria

Although the Mean Shift with velocity prediction will cope with minor occlusions

or lighting changes, large scale appearance changes to the kernel of the tracked

object can cause Mean Shift to fail. Therefore, a termination criteria is applied

to determine when the Mean Shift kernel has failed and is no longer tracking the

original object. If multiple short but significant tracks of the same object are

found, these can then be combined together to produce the full trajectory. The

termination criteria is based on a likelihood ratio based on training data. The

likelihood ratio is based on two learnt cumulative frequency histograms. The

two histograms are formed of the probability of positive and negative objects

respectively. To form the cumulative probability, the groundtruthed training se-
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quence used for the Models of Motion in Section 5.3 are employed. For each

groundtruthed object track, the similarity of each separate individual inter frame

is computed by the Bhattacharyya coefficient and is used to populate the posi-

tive cumulative frequency histogram. While the negative probability is formed

from the the similarity of an object with other objects on the following frame.

Figure 5.10 shows the positive and negative cumulative frequency histograms.

This cumulative histogram can then be used as a probability of the correlation
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Figure 5.10: The Cumulative frequency probability for object similarity for true

and negative objects.

between two objects being a positive or negative correlation.

Within the Mean Shift tracker, the reference appearance model ψ∗ is updated

every 25 frames, and subsequent frames are then correlated to this appearance

model. This correlation uses the learnt cumulative frequency histograms to pro-

vide a ratio of similarity. This is the likelihood ratio of the tracked kernel area,

ψt at frame t, being more similar to the appearance model of the track, ψ∗, than
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not similar to the appearance model. This is shown in equation 5.3

L(Kt|ψ∗) =
P (ψt|ψ∗)
P (ψt|ψ∗)

(5.3)

where P (ψt|ψ∗) is the probability of the kernel ψt being the appearance model

for the track and P (ψt|ψ∗) is the probability of the kernel not being the ap-

pearance model for the track. These are calculated as the cumulative proba-

bility, of the Bhattacharyya similarity coefficient shown in equation 5.4, where

i = {0.01, 0.02, 0.03, ...ρ[ψt, ψ∗]}. Where positive examples are used for P (ψt|ψ∗)
and negative groundtruthed examples used for P (ψt|ψ∗).

P (ψt|ψ∗) =

ρ[ψt,ψ∗]∑
i=0

Fi(ψ) (5.4)

where ρ[ψt, ψ∗] is the Bhattacharyya similarity coefficient between ψt and ψ∗,
(shown in equation 5.5) and fi(ψ) is the normalised frequency histogram of the

Bhattacharyya coefficient over a number of ground-truthed object sequences.

ρ[ψt, ψ∗] =
m∑

u=1

√
ψu ∗ ψu∗ (5.5)

If the likelihood ratio L(Kt|ψ∗) is less than 1 the trajectory track is terminated,

forming a short tracklet, {STt start, ..., STt end}. Where STt is the state at time

t represented by the colour appearance model (colour histogram) STψt and mo-

tion model STxy (Kalman filter state). Figure 5.11 shows how the tracks are

significantly reduced once the termination criteria is applied.

5.4.3 Kernel Scale Adaption

Within the Mean Shift tracker proposed by Comaniciu [24], there is a simple

scale adaption technique that adjusts the kernel size based on maximising the

Bhattacharyya coefficient for different kernel sizes. This adapts the scale of the

kernel well for sequences with little or no occlusions, although as the occlusion
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Figure 5.11: A, shows all the trajectories from the seeded Mean Shift tracker of

a crowded video sequence, B shows the trajectories, where the tracks have been

terminated using the termination criteria in Section 5.11.

level increases, the overall tracking performance drops. This is because the opti-

mised scale doesn’t take into account that part of the person could be occluded,

and will therefore only optimise on the visible part of the object. This can cause

misleading and incorrect scale adaption. Within this work there is no need for an

adaptive scale within the Mean Shift tracker as the head and shoulder detector

determines the scale of the kernel. This means that as the person increases in

size the scale in the head and shoulder detection will increase ensuring the tra-

jectories bounding box will adapt in size as required. This means that the overall

trajectory of an object has a piece-wise linear approximation to scale changes

when the short tracklets are recombined in Section 5.5.

5.5 Combining Tracklets into Trajectories

The Mean Shift kernel tracker produces short tracklets for each person visible

within the video sequence. Each person will have multiple tracklets over time,
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and the aim of this section is to find the optimum path through the complete

sequence. This is solved through a dynamic programming algorithm. Dynamic

programming is designed to find the shortest path in a graph using a optimal

substructure. It works by breaking the problem of finding the lowest cost path

through the node states into smaller sub problems. The are many algorithms used

to find the shortest path including Dijstra’s algorithm [27] [113], The Viterbi

algorithm [108], and The Generalized Bellman-Ford [9]. The Dijstra’s algorithm

is used for best-first ordering, in that it uses an evaluation function and always

chooses the next step to be that with the best score. While the Viterbi uses a

topological approach, and The Generalized Bellman-Ford is a combination of the

two, together with the ability to use negative weighting on paths. For this work

the Viterbi algorithm was chosen.

The Viterbi algorithm operates on a state machine assumption. That is, at any

time the system we are modelling is in some state. There are a finite number

of states, however large, that can be listed. Each state is represented as a node.

Multiple sequences of states (paths) can lead to a given state, but one is the

most likely path to that state, called the “survivor path”. This is a fundamental

assumption of the algorithm, because the algorithm will examine all possible paths

leading to a state and only keep the one most likely. This way the algorithm does

not have to keep track of all possible paths, only one per state.

Each tracklet STτ = {STt start, ..., STt end} produced by the Mean Shift tracker

forms a partial row in the state matrix ST between the time indexes t start and

t end, where τ is a state for a frame. Each state τ is a node within the overall

graph or state matrix. The objective is to find the optimal path through this

state matrix that maximises the likelihood of the trajectory for the reference

object REF which has a state of STREF . This is found using three cost functions

that are used to weigh the paths between nodes. There are three likelihoods; LRef ,

LApp and LKF and the learnt detection reappearance model from Section 5.3.1
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Lloc. These four likelihoods are expanded below.

The appearance similarity LRef between the State appearance STψtand the ref-

erence appearance model STψREF is found using the Bhattacharyya similarity

coefficient 5.5.

LRef = ρ[STψ,t, STψ,REF ] (5.6)

This provides a constraint ensuring the trajectory will stay visually similar to

the original person’s reference image. Between frames t and t+1 the appearance

similarity Lapp between the states is computed using the Bhattacharyya similarity

coefficient 5.5.

Lapp = ρ[STψ,t, STψ,t−1] (5.7)

A motion model is computed for each state trajectory adding a non appearance

based constraint.

LKF = p(Sxy,t|Sxy,t−1) (5.8)

The Kalman Filter [109] in the Mean Shift kernel tracking in Section 5.4 computes

predicted positions {STxy,t, STxy,t+T} allowing each tracklet to be artificially ex-

tended. T is typically set to 4 seconds, i.e. 100 frames. The extended track

allows for a short overlap between separate tracks of the same object, reducing

sharps jumps between tracks and overcoming occlusion. The Mahalanobis sim-

ilarity measure is used to find the difference in position between the predicted

state positions and current state positions. The detection reappearance model

p(Dtj|Dti) from equation 5.2 is used as a prior to constrain the other similarity

measures. The likelihood of the state at frame t is computed from the path in

frames t to t− T .

Lloc =
T∏

i=1

p(Dt|Dt−i) (5.9)

Dynamic programming is then used to select the optimal path that maximises

the objective function,

Φ(l) = max
τ
{LRefLappLKF Lloc}Φt−1(τ) (5.10)
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where there are τ possible states for a frame. This can be visualised as a trellis

diagram, as shown in Figure 5.12. There are 4 state tracks shown in Figure 5.12,

Figure 5.12: A visualisation of the Trellis diagram for find the lowest cost path

through the video sequence.

with the SREF selected as the starting image of the person to track. Then at each

time interval, t, all possible paths from the current state are examined and the

cost is maximised to find the next most likely state.

5.5.1 Multiple Paths

The recursive algorithm in equation 5.10 maximises a single best path. Therefore

should two or more trajectory states maximise to the same destination state,

the state transition with the highest likelihood will use that destination state.

The remaining trajectories will re-evaluate the remaining states, and repeat the

process of the maximising the state transitions. This allows multiple trajectories

within the state transition trellis design while achieving multiple near optimal

paths through it.

5.5.2 Improving Accuracy

The trajectory computed through the sequence for an individual will not be

completely centred on the individual at times, with minor “jumps” when the



82 Chapter 5. Tracking within crowded scenes

best computed path changes to other tracklets. To remove these the a priori

learnt optical flow likelihood can be used. The prior describes the inter frame

motion of pixels in an objects bounding box. It can localise and improve the

accuracy of the trajectory on a frame-by-frame basis by reducing jumps caused

by occlusions or Mean Shift tracker failure. Each pixel in the sequence has an

optical flow value, this is used to compute a likelihood of that pixel belonging

to a specific object. When objects overlap, a pixel will have multiple likelihoods

for all the overlapping objects. The pixel is then assigned the identity of object

with the highest likelihood. A Kalman filter motion model is also applied to the

centroid of the tracking kernel to smooth out any jitters, assuming a constant

motion model.

5.6 Experiments

To examine the effectiveness of the multiple person tracker, four separate se-

quences containing up to 8 people walking in crowded scenes were examined.

This section shows the tracking results on people walking and interacting in in-

door corridors.

5.6.1 Data Sequences

Following the experiments of Chapter 4, concerning colour consistency of object

intra camera. Figure 4.8 in Section 4.4.2 shows that both CLUT and quantised

RGB with an In-Parzen window have a high consistency of colour intra camera.

Both would be well suited to cope with the lighting changes that occur in non

uniformly lit areas. However, quantised RGB is used here as there are no real-

time constraints and the descriptor can hold more discrimative information about

the object than the 11 bin CLUT method. Two different sources were used to
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provide a total of four sequences to test the method. Two were sourced from a

newly created groundtruthed dataset and two from the CAVIAR video sequences.

Dataset 1

A dataset was recorded, (Dataset 1) as it was found that the publicly available

benchmarked data sets, including the CAVIAR [1] and PETS [3] video sequences

lacked heavy occlusions and therefore were not challenging enough. Two new

sequences were groundtruthed and used. The first sequence consists of seven

people walking towards and away from the camera. There is overlap between the

individuals and complete occlusions occur within the sequence. The second video

is similar but many of the individuals in the sequence stop mid way through

the sequence and there are a greater number of interactions and heavy occlu-

sions. This is designed to show the limitations of motion based trackers such

as the Kalman Filter, and appearance based trackers such as Mean Shift. Both

sequences are very challenging due to a number of reasons. The lighting used is

non uniform, this affects the mean shift tracker and head and shoulder detector.

There is a large field of view causing a large scale variation as people move along

the corridor. The camera is mounted less than a metre above head height causing

many occlusions. The sequences were captured using a single surveillance style

PAL resolution camera at 25fps. It is a conventional low cost camera, with poor

colour response and high pixel noise levels.

CAVIAR

To provide a degree of comparison to other techniques, two commonly used se-

quences from the CAVIAR [1] project were used. Only two sequences are used

as the majority of sequences contain few occlusions or interactions making them

too simple for most state of the art tracking techniques. The two sequences
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were taken separately from the sequence labelled “OneStopMoreEnter1”. The

sequences are low quality with a very reflective white floor and a wide field of

view. Both sequences have people overlapping and walking away from each other,

some full occlusion also occurs.

The sequences were ground truthed and the approach compared with the Mean

Shift algorithm [24] for each of the four sequences. The Results are presented both

qualitatively with bounding boxes indicating the people tracked and quantita-

tively through graphs and tables. To assess performance, the Euclidean distance

between the centre of the groundtruth’s bounding box and that of the computed

trajectory is calculated to give a distance error. The percentage of overlap be-

tween the groundtruth and computed trajectory bounding box gives an indication

of correct scaling and accuracy. The newly created dataset sequences are shown

first, and then the two CAVIAR sequences. Then the improvements using the

optical flow prior and a Kalman filter are presented separately on the CAVIAR

sequences.

5.6.2 Dataset 1

People in Video 1 were tracked using three possible methods. The state of the art

Mean Shift algorithm, the main method in this chapter called a tracklet tracker

introduced earlier, and the tracklet tracker with the additional head and shoulder

detection prior outlined in Section 5.3.1 providing a predictive motion model.

Figure 5.13 shows the mean euclidean distance error and mean overlap per frame

with the groundtruth kernel. Figure 5.13(a) shows that all three methods have

similar average Euclidean difference per frame, however Figure 5.13(b) shows that

the tracklet tracker with the head and shoulder prior is much more accurate at

tracking the kernel sizes, this is shown by the stable overlap percentage through

the sequence. While Mean Shift overlap percentages drops after heavy occlusion
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occurs midway through the sequence.

Figure 5.13: Video 1: Figure (a) shows the mean Euclidean distance difference

per frame for the tracklet tracker with the learnt prior and without and also Mean

Shift (less is better). Figure (b) shows the mean overlap per frame for the tracklet

tracker with and without the prior and Mean Shift (more is better).

To provide more detail Figure 5.14 shows the results of every 10 frames for people

tracked within the sequence for both the tracklet tracker with head and shoulder

prior and the Mean Shift.

Figure 5.14(a) and Figure 5.14(b) shows the Euclidean distance error between the

bounding boxes’ centre computed trajectory path and that of the groundtruths’

bounding box centre over video 1. It can be seen that overall the Tracklet Tracker

with Prior in Figure 5.14(a) minimises the Euclidean error distance compared to

the Mean Shift tracker Figure 5.14(c). While both trackers work well at the begin-

ning of the sequence when there is little occlusion or interaction, towards the end

of the sequence the Mean Shift tracker fails on a number of people as the inter-

actions become more complex. Occlusions are solved by finding alternative paths

through the sequence. Figure 5.14(b) shows the overlap of the Tracklet Tracker

with prior computed trajectories bounding box with that of the groundtruth,

with Figure 5.14(d) repeating this for a Mean Shift tracker. Figure 5.15 gives a
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Figure 5.14: Video 1: Figure (a), shows the Euclidean distance between the com-

puted trajectories and the groundtruth over the a video sequence(less is better)

for the Tracklet Tracker with Prior. Figure (b), shows the percentage overlap

between the computed Tracklet Tracker with Prior trajectories bounding box

and the groundtruth’s bounding box over the video sequence (more is better).

Figure (c) shows the Euclidean distance between a Mean Shift tracker and the

groundtruth. Figure (d) shows the percentage overlap between a Mean Shift

tracker box and the groundtruth’s box.
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Figure 5.15: Video 1: A comparison between the tracklet tracker algorithm and

a Mean Shift Tracker and the groundtruth over 4 frames.
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qualitative comparison of 4 frames in the same video sequence. While the Mean

Shift works well at frame 85, at Frame 153 there is full occlusion of a number of

people being tracked and by frame 298 the Mean Shift has incorrectly tracked

a number of people and this is shown by the increasing Euclidean distance and

incorrect labelling of people in Figure 5.16. Figure 5.17 shows the mean per

Figure 5.16: Video 1: To show the number of correctly labelled tracks (out of

4) over the course of the sequence.

frame Euclidean and percentage overlap for video sequence 2, this is a less diffi-

cult sequence, and both techniques work well. Though the Tracklet Tracker with

Prior performs better than Mean Shift Despite these good results for 4 people

in the sequence in video 1, the algorithm still fails part way on the other people

in the sequence, including an individual who is continually occluded for around

100 frames by another person and his best path is corrupted. There are other

people in the sequence who do not have trajectories formed for them, this is due

to two main reasons. For people walking away from the camera, despite the head

and shoulder detector working well, it isn’t as reliable as people walking towards

the camera. This means there are less tracklets to form the trajectory of the

chosen people and the overall best path trajectory doesn’t exist in the states. As
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Figure 5.17: Video 2: A comparison of the mean Euclidean distance difference

(Figure (a) , less is better) and percentage overlap (Figure (b) more is better)

between the tracklet tracker algorithm and a Mean Shift tracker.

short but significant tracklets are linked to form a single trajectory through the

sequence, if some of the people are continually occluded for long periods through

the sequence, there will be no significant tracklet to link together and this will

cause the tracking to fail.

5.6.3 CAVIAR Sequences

The CAVIAR sequence has a number of different challenges the techniques must

cope with. The largest difference to the previous dataset Dataset 1 video is

the size of the people. The CAVIAR camera is mounted on the ceiling meaning

people are smaller in size. However, a high mounting high means there is less

occlusion due to an improved viewing angle. Video 3 is taken from the sequence

labelled “OneStopMoreEnter1”. Figure 5.18 shows that the Mean Shift is unable

to track the selected people in the sequence, while the Tracklet Tracker has a

high degree of success with a low euclidian error and a high mean overlap with

the groundtruth. However there are times when the overlap drops significantly,
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Figure 5.18: Video 3: A comparison of the mean Euclidean distance difference

(Figure (a) , less is better) and percentage overlap (Figure (b) more is better)

between the Tracklet tracklet with head and shoulder prior and a Mean Shift

tracker.

(frames 150 and 250). This is caused by occlusions from other people, causing

the tracker to become less accurately centred on the selected trajectory. The final

sequence, Video 4 from the CAVIAR dataset is shown in Figure 5.19 and it has

a similar performance to Video 3. The Tracklet Tracker with head and shoulder

prior has a number of jumps, which are caused by the piecewise linear nature of

the tracklet tracker. These occur as a Mean Shift tracklet drifts off target, or

if the human has a large change in motion, causing the motion model to briefly

correct itself. To remove a number of these spikes the optical flow of the tracked

person can be used to improve accuracy.

5.6.4 Improving Accuracy

To remove the spikes shown in Figures 5.18 and 5.19, the learnt optical flow prior

is used to improve the bounding box accuracy. Figure 5.20 shows how the pixels

are assigned in this example of minor occlusion from the CAVIAR dataset. It

can be seen that despite the blue box overlapping the yellow area, few of the
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Figure 5.19: Video 4: A comparison of the mean Euclidean distance difference

(Figure (a) , less is better) and percentage overlap (Figure (b) more is better)

between the Tracklet tracklet with head and shoulder prior and a Mean shift

tracker.

Figure 5.20: Example of assigned pixels when people have overlapping kernels.
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pixels within the yellow area have been assigned as blue. The mean and standard

deviation of the assigned pixels are found, to adjust the original object’s bounding

box. In Figure 5.20, the original blue box position and size is indicated by the

thin blue line extending to the green person, this was then reduced in size to

simply cover the correct person. This visible improvement can be seen in the

performance graphs also. Figure 5.21 shows the improvement for Video 3. The

Figure 5.21: Video 3: A comparison of the mean Euclidean distance difference

(Figure (a) , less is better) and percentage overlap (Figure (b) more is better)

between the Tracklet tracklet with head and shoulder prior and the Tracklet

tracklet with head and shoulder and optical flow prior.

mean euclidian distance error in Figure 5.21(a) for the Tracklet Tracker with

prior and Optical Flow, is less than both the Mean Shift and Tracklet Tracker

without the optical Flow priors. By using the Optical flow prior large increases

in the overlap error shown by the sharp drops are smoothed out. This is due to

the kernel centroid being adjusted to better fit the actual person being tracked.

In addition, the error during the significant overlap that occurs at frame 170, is

reduced for both the distance (Figure 5.21(a)) and kernel overlap (Figure 5.21(b)).

A similar effect is seen within Video 4 when the optical flow prior is used. Fig-

ure 5.22 shows the mean distance error and percentage overlap with groundtruth
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over the video sequence. There is a marked improvement around frame 1000 to

Figure 5.22: Video 4: A comparison of the mean Euclidean distance difference

(Figure (a) , less is better) and percentage overlap (Figure (b) more is better)

between the Tracklet tracklet with head and shoulder prior and the Tracklet

tracklet with head and shoulder and optical flow prior.

1200 where using the Optical flow prior (shown as blue stars) significantly re-

duces the errors. Figure 5.23 allows the comparison of serval frames of images

from Video 4’s sequence.

It can be seen that at frames 915 and 1017, for the Tracklet Tracker with head and

shoulder and optical flow priors, that the yellow centroid has been substantially

adjusted to be more centred on the person.

5.7 Conclusion

This chapter has described an approach to combine the strengths of a global

head and shoulder detector to locate people, with those of a localised Mean Shift

tracker for frame to frame correspondence. The Mean Shift tracker produces

short tracklets which are recombined using a Viterbi style approach to produce

a full trajectory through the video. Two learnt models of human motion are
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Figure 5.23: Video 4: A selection of frames from the sequences, comparing all

techniques.
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added as constraints for the computed trajectory. The spatial reappearance of

the head and shoulder detector over time has been used to model the motion of

people, while learnt optical flow patterns of a persons kernel are used to improve

accuracy of the trajectory. Overall this approach leads to an increased robustness

to occlusions and interactions between people in crowded scenes.

The approach has been tested on four challenging sequences of people interacting

and occluding within indoor scenes, including two on the well known dataset

CAVIAR. The results are consistently better than that of a Mean Shift tracker

which fails to cope with heavy occlusion. These promising results are possible

using a single low cost surveillance type camera. Future performance could be

further enhanced through detection of people facing away from the camera also

by addressing the issue of people who are heavily occluded for long periods.
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Chapter 6

Real Time Inter Camera Tracking

This chapter describes work into the tracking of objects between spatially sepa-

rated uncalibrated cameras in real time. The transfer of a tracked object from

one camera to another, can be termed “object handover”. To be able to achieve

successful object handover we need to know about the environment in which the

cameras operate to be able to infer information about how objects move inter

camera (between camera).

To address real world requirements, no a priori information is supplied to the

techniques i.e. no colour, spatial or environmental calibration. As cameras may

have no overlapping fields of view, many traditional calibration techniques are

impossible. An ideal tracking environment could be described by the following:

• It is able to work immediately upon initialisation,

• Performance will improve as new evidence becomes available,

• Is adaptable to changes in the camera’s environment

To be able to fulfil these aims the approach needs to learn the relationships

between the non-overlapping cameras automatically. This is achieved by the way

97
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of three cues, modelling colour calibration, relative size and movement of objects

inter camera. These are explained in sections; 6.5, 6.4 and 6.3 respectively. The

three cues are deliberately weak as more detailed and complex cues would not

be able to work with the low resolution and real time requirements of a typical

camera installation. These three weak cues, are then fused together to allow the

technique to determine if objects have been previously tracked on another camera

or are new object instances. The approach learns these camera relationships,

though unlike previous work does not require a priori calibration or explicit

training periods. Incrementally learning the cues over time allows for the accuracy

to increase without any supervised input.

This chapter presents a novel approach to inter camera tracking which fuses ad-

ditional features with a scalable architecture providing accurate object handover

between cameras. Unlike other methods this chapter presents work that is learnt

incrementally over time instead of as a batch approach. The performance is

demonstrated with extensive experimental testing and results and the incremen-

tal learning approach is compared with a traditional batch approach.

6.1 Experimental Setup

Figure 6.1 gives a general overview of the experimental setup. This figure shows

an example containing two camera modules and a module for the operator to

query the cameras about objects. Each camera is a self contained module con-

nected to others via a network, meaning that it can easily be distributed over

multiple processors or machines. An overview of each stage is given below:

• Object Detection The camera image is fed into an object detection mod-

ule where a background scene model is maintained and updated. This model

is used to delineate foreground from background for the incoming image.
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• Intra Camera Tracking Foreground objects are correlated to objects in

the previous frame using a Kalman filter to provide intra camera object

tracking. If a correlation with an object in the previous frame is found, the

object is labelled as an Old Object and the colour descriptor for that object

is updated. If no correlation exists, it is labelled as a New Object and if

an object from the previous frame has no correlation to any object in the

current frame, it is deemed an Exiting Object. The Kalman filter continues

positional predictions for the Exiting Object to overcome object occlusions,

but after a set time with no incoming correlation, it is deemed to have left

the camera. At this point, the Exiting Object’s colour, size, and position

descriptor are broadcast via the network to all other camera modules to

enable inter camera tracking.

• Inter Camera Tracking When an object is labelled a New Object, its de-

scriptor is compared to objects that have previously exited other cameras

and been broadcast as potential candidates for object handover. This com-

parison is based upon colour similarity weighted by the prior of how colour

varies between cameras and how likely the disappearance /reappearnce is..

• Update System Cues If a potential object handover is identified, the

object’s colour similarity is used to provide a weighted update to camera

colour calibration model, the relative size of the bounding box, and iterative

camera region linking scheme.

In this way each camera maintains a model of how other cameras in the network

relate to it. To track an object through the camera network, a request queries

all cameras, and possible correlations from the Inter camera Tracking cues are

returned to the operator in a ranked list for the operator to use.
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Figure 6.1: System Overview with two independent camera tracking modules

connected together by a network. With an operator query module for tracking a

specific object inter camera

6.2 Intra Camera Object Tracking and Descrip-

tion

To detect moving objects, the static background is modelled in a similar fash-

ion to that originally presented by Stauffer and Grimson [100]. The foreground

objects are found from the background mask by connected component analysis

on the resulting binary segmentation. This provides a bounding kernel around

each object with a centroid and limits of the kernel. Further detail about the

background modelling process is described in Section 2.2. This provides frame by
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frame object position, a track of each object through the sequence needs to be

created using correlation between frames. This could be solved using the method

in Chapter 5, where the technique combination of the head and shoulder detector

and tracker gives high quality accurate results within challenging scenes. However

that work is an offline process due to head and shoulder detector being compu-

tationally complex. Due to the large data collation phase of this approach where

the camera relationships are learnt, a real time approach is required. Therefore to

reduce the computational demand for the intra camera tracker a Kalman Filter is

used to provide good temporal linkage between the detected foreground objects.

This will reduce the robustness of tracking individuals within crowds, but will

still maintain the ability to track a crowd as one group. Therefore will not reduce

inter camera robustness.

6.2.1 Kalman Filter

A Kalman filter is used to correlate the inter frame movement of foreground

objects. The filter is a recursive process in that each updated estimate of the

state position is computed from the previous estimate and the new input data,

so only the previous estimate is kept. In addition to eliminating the need for

storing the entire past observed data, the Kalman filter is computationally more

efficient than computing the estimate directly from the entire past observed data

at each step of the iterating process. This means it can be run in real time, while

having the ability to use the predictive estimates to allow for minor occlusions.

In addition, the trajectory of the object is smoothed despite minor jumps caused

by the connected component analysis of the background mask. Each new object

has a Kalman filter initialised on its position and is updated using the standard

Kalman filter update rules [109] using a constant velocity model with a white

noise drift term. For details Section 3.3 in Chapter 3 provides detail about the

update equations. The Kalman filter estimates are represented by the mean and
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covariance of the centre of an object’s bounding box. These are correlated to the

detected foreground objects using Mahalanobis distance.

6.2.2 Object Appearance Modelling

The appearance of a foreground object within a kernel bounding box is rep-

resented by a discrete histogram. Each foreground pixel within the kernel is

quantised to a bin within the appearance histogram. A histogram is used as

the appearance descriptor for the objects as, it is invariant to pose and shape,

making it ideal for cross camera correlation. Chapter 4 explored the idea of us-

ing colour as a descriptor for both intra and inter camera tracking of people.

Within that chapter the colour consistency of object tracked inter and intra cam-

era were investigated with a number of techniques analysed. A brief summary of

the findings are provided below, The Colour Lookup Table colour space (CLUT)

quantisation model will be used initially as this has a high performance tracking

objects. This method works well with the real time constraints (25fps) with un-

calibrated cameras, providing a simple coarse descriptor for both intra and inter

camera tracking of objects. However, as described later, one of the learnt cues is

the linear colour transformation of objects inter camera. This will allow for basic

colour calibration to occur. For this, a linear colour space such as RGB must be

used. Therefore once the initial stage of learning the colour model inter camera

has occurred, RGB quantisation with a computational cost effective Post-Parzen

window is used. This provides a higher performance as it will be partly calibrated

allowing a discriminative object correlation.

6.2.3 Camera fields of view

The location and environment of the surveillance cameras will determine whether

cameras have overlapping or non-overlapping fields of view. In real case situa-
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tions such as airports and rail stations, most cameras will be non-overlapping as

the number of cameras is limited by physical and cost constraints. When cam-

eras have overlapping fields of view, correlation between the cameras needs to

be learnt, to be able to handover object tracking as objects move between the

cameras. This is traditionally done through explicit manual geometric calibration

of the system with a known object, for example a colour chart or checker board.

However, there is no calibration between overlapping cameras within this work,

instead the cameras will learn over time that as one object appears on camera 1

and then appears on camera 2 a strong temporal relationship between the two

cameras exists. Cameras with non-overlapping fields of view pose a challenging

problem to object handover, as the objects may never be observed simultaneously.

However, the same method can be used for overlapping and non-overlapping cases.

There are a total of eight cameras used to test the techniques. They are spread

over two floors, in two close groups of four cameras. Figure 6.2 shows the two

groups of cameras with the physical link shown by the arrow. The lower floor

contains a large number of popular alternative exits which allows people to use

multiple routes. In addition camera 8 faces a lift and door which create fore-

ground motion in addition to the actual objects of interest. Simple quantisation

of colour alone cannot correlate objects sufficiently inter camera due to illumina-

tion variations, and occlusions. Therefore, three methods to concurrently learn

the relationships between the cameras are presented in Sections 6.3 to 6.5.

6.3 Probabilistic inter camera coupling

The first method incrementally learns the probabilistic relationship of object

movement between cameras. This makes use of the key assumption that, given

time, objects (such as people or cars) will follow similar routes inter camera due

to paths, shortest routes and obstructions. The repetition of these routes over
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Figure 6.2: The two camera setup over the two floors with example images.
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time, will start to form marked trends in the data. The reappearance period

between two cameras is modelled by calculating the probability that an object

disappearing from one camera at time tstart, will reappear in another camera at

time tend. These probabilistic temporal inter camera links can be used to cou-

ple camera regions together, producing a probabilistic distribution of an objects

movement between cameras.

This makes it possible to link common entry and exit regions between cameras.

The links, modelled as conditional probabilities, are constructed using reappear-

ance histograms populated over time as evidence is gathered. As the number

of possible links increase, so does the quantity of data required to populate the

histograms. However, most links are invalid as they correspond to impossible

routes, such as entry points on walls, or between cameras too distant to be re-

liable. Therefore, the technique is able to identify the valid and invalid links

without user supervision. Previous solutions required either batch processing or

hand labelling to identify entry/exit points, both impractical in large systems,

and unable to adjust to camera or environmental changes. This approach is

initially coarsely defined, but increases in detail over time as evidence becomes

available, and can adjust to changes without a system restart.

6.3.1 Incremental link learning

Objects are automatically tracked intra camera with a Kalman filter to form

a colour appearance model of the object. The CLUT colour histogram B =

(b1, b2....bn) is the median histogram recorded for an object over its entire tra-

jectory within a single camera. A median histogram is where each bin is found

by taking the median value of that bin over the person’s trajectory. All new

objects that are detected are compared to previous objects exiting other cam-

eras within a set time window, T . The image is split into a number of areas
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called regions for entry and exit of people. Between the regions a temporal link is

formed. This temporal link is a a discrete probability distribution of an objects

reappearance period T . It is formed using the colour correlation of new objects

with respect to their recorded reappearance period. The colour correlation is

computed using Bhattacharyya similarity measure. Other correlation measures

such as histogram intersection and mutual information were examined in great

detail Section 4. However, for correlation of object both intra and inter cam-

era, the Bhattacharyya similarity measure give the highest performance. Thus

the frequency f of a u bin in a temporal link reappearance model between two

regions is calculated as

fu =
∑

∀r

∑

∀s





ρ[r, s] u∆i ≤ (tend
r − tstart

s ) < (u + 1)∆i

0 otherwise
∀u, u∆i < T

(6.1)

where tstart
r and tend

r are the entry and exit times of object r respectively, T is

the maximum allowable reappearance period and ∆i is the bin size in seconds.

ρ[r, s], the Bhattacharyya similarity measure between the appearance models of

objects r and s is calculated as

ρ[r, s] =
m∑

u=1

√
rusu (6.2)

To reduce quantisation effects, a gaussian kernel blur can be used. Therefore For

In-Parzen Windowing equation 6.1 becomes

fu =
∑

∀r

∑

∀s
ρ[r, s]η((tend

r − tstart
s − u∆i), Iσ2) ∀u, u∆i < T (6.3)

where η(V ε<, Iσ2) represents a 1D Gaussian kernel positioned at V with co-

variance σ2

η(V ε<, Iσ2) =
1

σ
√

2π
e−

t2

2σ2 (6.4)

Frequencies are only calculated for an object p that disappears from region β2

followed by a reappearance in region β1, (fβ1|β2). By normalising the total area of
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the histogram by
∑T

r f
β1|β2
φ , an estimate to the conditional transition probability

P (Ox,t|Oy) is obtained. An example of P (Oβ1,t|Oβ2) is shown in Figure 6.3 where

Oβ1,t is object β1 at time t. This probability distribution shows a distinct peak

at 9 seconds indicating a link between cameras 1 and 4 with a single region per

camera.

Figure 6.3: An example of a probability distribution showing a distinct link

between cameras 1 and 4 with a single region per camera over a reappearance

period of 45 seconds.

After sufficient evidence has been accumulated, determined by the degree of his-

togram population, the noise floor level is measured for each link. This could be

determined statically using the mean or variance, however, through experimenta-

tion, using double the median of histogram values was found to provide consistent

results. Figure 6.4 shows how the reappearance period of objects between cam-

eras 3 and 2 of Figure 6.2 develops as observations are added over time. A peak

reappearance probability at around 10 seconds increases in height as people are

tracked and evidence is added to the distribution. After 1000 people have been

accumulated there is a distinct peak around a reappearance period of 10 seconds.

If the maximum peak of the distribution is found to exceed the noise floor level,

this indicates a possible link relationship between the regions. If a possible link
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Figure 6.4: The reappearance period probability between camera 3 and 2 with

increasing collected data up to 1 day.

has been found, the parent regions are subdivided into four child regions as in

Figure 6.5. The initial distributions of the four new regions are set to that of the

parent. Subsequent data is incorporated into the appropriate refined distribution.

In order to allow for multiple entry and exit areas on the cameras, each cam-

era is subdivided into a number of equal regions, 16 on the current experiment.

Coupling all regions to all others is only feasible in small-scale experimental ap-

proaches. As the number of cameras increase, the number of links required to

model the prior will increase exponentially. With 16 regions between two cameras,

there are 162 (256) links, with just an extra two cameras this becomes 164 (65536)

links. However, many regions will not form coherent links, and can therefore dur-

ing the subdivision operation, unused regions can be removed to minimise the

number maintained. It is important that links are not removed between regions

that simply require additional data. Therefore, a link between two regions is only

removed if it has no data in it at all. This cautious method ensures no regions or

links are removed that might be useful in a later subdivision. Figure 6.5 shows

how the active regions are sub divided and removed over time. Initially there
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are no regions as shown in initial start-up, then each camera is assigned a single

region, with a uniform conditional probability of objects moving between cam-

eras. After the first 367 tracked objects, subdivision 1 shows how the cameras are

linked together. Subdivision 2 occurs after 1372 objects have been added to the

technique and unlinked regions are removed. Further subdivision and removal of

regions is achieved in subdivision 3 following 2694 objects and subdivision 4 at

7854 objects. The remaining regions in subdivision 4 show the main entry and

exit areas. Table 6.1 shows the number of links maintained and dropped at each

Figure 6.5: The iterative process of splitting the blocks on the video sequence

over a day.

subdivision stage, along with the amount of data used. It can be seen that with

each iteration, the number of possible links increases dramatically, whereas the

number of valid links kept is considerably less. The policy of removing unused

and invalid regions improves the approaches scalability. This iterative process

can be repeated to further increase the resolution of the blocks. The regions start

to form the entry and exit points of the cameras, Figure 6.6a, shows the result

after 4 subdivisions. The lighter regions have a higher importance determined by



110 Chapter 6. Real Time Inter Camera Tracking

Iteration Amount of Number of Tot poss Initial Dropped Kept links

Data Regions Links links links

1 367 4 12 12 0 12

2 1372 16 240 240 45 195

3 2694 60 2540 1631 688 943

4 7854 191 36290 36134 34440 1694

Table 6.1: Table of number of links maintained and dropped in each iteration of

region subdivision.

the number of samples each link contains. As the number of iterations increase,

Figure 6.6: a, shows the main identified entry/ exit regions. b,shows the individ-

ual regions that, if similar, are then recombined to form larger better populated

regions, shown by the constant colour areas.

the size of the linked regions decreases and thus reduces the number of samples

detected in each region. This affects the overall reliability of the data used. To

counter this, regions which are found to have similar distributions to neighbouring

regions are combined together to increase the overall number of samples within

the region (as illustrated in Figure 6.6b,). This reduces the overall number of
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regions maintained and the actual links between regions, therefore increasing the

accuracy of the remaining links. This incremental approach of learning entry and

exit areas, is similar in outcome to that of a batch approach. With a batch tech-

nique all data is first collected and then all data is concurrently used to compute

the entry and exit points. This could produce a more accurate result, however it

is only possible after the data collection phase is over.

6.4 Probabilistic Inter Camera Bounding Box

The background segmentation used, provides a background mask, with the fore-

ground objects labelled via connected component analysis. Around each of the

detected objects a bounding box is formed based on the mean and standard de-

viation of the blob in pixels, Figure 6.7 shows the rectangular bounding box of a

person. The size of this bounding box is utilised to provide a coarse size descrip-

Figure 6.7: The rectangular bounding box around a detected object.

tor of the object in the image plane as it moves upon the ground plane. Objects

further from the camera will have a smaller bounding box size, with closer ob-

jects having a larger size. As in the previous section we can assume that, over

time, objects follow similar routes inter camera. This means that they will exit

and enter cameras in consistent areas and therefore the size of the object should
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be consistent upon entry or exit. Looking at the experimental environment in

Figure 6.2, if a person moves between camera 4 and 3, they will leave camera

4 at the bottom of the camera with a large bounding box, and should reappear

towards the top of camera 3 with a relatively small bounding box. This fact can

be utilised to calculate the likelihood that a person has moved inter camera based

upon the relative entry size to the current camera.

The relationship between the exit size from one camera and the entry size in an-

other can be represented by a 3D histogram, but due to the problems associated

with having sufficient observations to populate such a histogram we assume inde-

pendence and model the relationship as two 2D histograms. Figure 6.8 shows this

relationship for the x size of the bounding box between cameras 1 and 4. These

Figure 6.8: The probability distribution of the horizontal bounding box between

cameras 1 and 4.

relationships are only modelled at a camera-to-camera level and for eight cameras

there are 56 discrete histograms. The 2D distributions are learnt over time in a

similar way to the probabilistic spatio temporal coupling in the previous section.
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The histograms all start uniformly distributed. All new objects are compared to

previous objects within the reappearance period T . The correlation is computed

using the Bhattacharyya coefficient measure in equation 6.2. The new object s

will have an entry size and the old object r an exit size, so the observation is

then used to increment the appropriate bin in the 2D histogram for the specific

link by the strength of the correlation (colour similarity). Thus the frequency of

a bin for the x axis between two cameras cam1 and cam2 with the bounding box,

size, is calculated as

f(sizeexit
cam1, sizeentry

cam2) =
∑

∀r

∑

∀s
ρ[r, s]∗η((sizeexit

r , sizeentry
s ), Iσ2) (tend

r −tstart
s ) < T

(6.5)

where ρ[r, s] is the Bhattacharyya similarity measure between the objects from

equation 6.2 and η(V ε<2, Iσ2) is a 2D Gaussian as

η(V ε<2, Iσ2) =
1

2πσ2σ2
e−[

(x−µx)2

2σ2 +
(y−µy)2

2σ2 ] (6.6)

f(sizeexit
cam1, sizeentry

cam2) is then normalised, by the total area of the distribution to

provide the conditional probability of the resulting change in bounding box size

P (OEntry|OExit) where OEntry is an object with an entry size of Entry and OExit is

a previous object with a size of Exit. Over time, the prior of the size of entry and

exit bounding box will become increasingly accurate as more data is collected.

This is then used to weight the observation likelihood obtained through colour

similarity as was done in the previous section. As will be seen in Section 6.8,

these cues can be combined by simply multiplying their likelihoods together.

6.5 Inter Camera Colour Calibration

Colour quantisation assumes a similar colour response between cameras. However

this is seldom the case, the cameras of Figure 6.2 show a marked difference in
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colour response even to the human eye. Therefore, a colour calibration of these

cameras is proposed that can be learnt incrementally as with the distributions

previously discussed.

Initially the CLUT colour descriptor is used as the correlation measure between

objects. However, once sufficient colour calibration is achieved, a traditional RGB

quantisation with Post-Parzen Windowing is used as this provides a greater level

of discriminative detail. The colour transformation matrices between cameras are

constructed in parallel with the construction of priors on reappearance probability

and size. The tracked people are automatically used as the calibration objects,

and as shown in Figure 6.9, a transformation matrix is formed incrementally to

model the colour changes between cameras. As people vary in size, a point to

Figure 6.9: An illustration of when the transform matrix is used.

point transformation is unavailable. We therefore use the colour descriptor (a

histogram) of the object in the different cameras to provide the calibration. As

the histograms represent the probability distribution of an objects colour within

a camera, a linear transform is capable of providing the histogram pdf descriptor

to histogram pdf descriptor mapping [31] between cameras.

Transformation matrices are formed between the four cameras. Six transfor-

mations along with their inverses provide the twelve transformations required to

transform objects between the four cameras. As camera calibration is refined, the
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illumination changes that affected the success of the original correlation methods

discussed in [15] and Section 4, are reduced. This allows the object descriptor

used to be changed from the coarse CLUT to an RGB quantisation, which is

more discriminative.

The six transformation matrices for the four cameras are initialised as identity

matrices assuming a uniform colour response between cameras. When a person

is tracked inter camera and identified as possibly the same object, the transfor-

mation between the two colour descriptors is calculated, R ∗ H = S. Where

the transformation matrix H is calculated by computing the transformation that

maps the person’s descriptor from the previous camera R to the person’s cur-

rent descriptor S. This transformation is computed via SVD and each matrix

element is weighted by the objects colour similarity between the two colour de-

scriptors. This weighting is essentially learning rate, allowing strong correlation

to be heavily incorporated into the colour calibration models, while uncertain

correlations given less important. The matrix t is then averaged with the appro-

priate camera transformation matrix, and repeated as people are tracked between

cameras to gradually build a colour transformation between the cameras. As not

all object correspondences will be true correspondences, this method will intro-

duce small errors. However, it is in keeping with the incremental theme of the

thesis and again relies upon the fact that given time, statistical trends in the data

will emerge. This allows continual updating and adapting to the colour changes

between cameras as additional data becomes available.
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6.6 Calculating Posterior Appearance Distribu-

tions

The conditional prior probability cues of objects between cameras can be used to

weight the observation of tracked people providing a posterior probability that

an object has been tracked inter camera. Over time, the prior and therefore the

posterior becomes increasingly accurate as available data increases, this allows

for region subdivision, and increasingly accurate colour calibration and bounding

box priors. Given an object Ot which disappears in region β2 we can model its

reappearance probability over time as;

P (Ot|Oβ2) =
∑

∀β1

wβ1P (Oβ1,t|Oβ2) (6.7)

where the weight wβ1 in region β1 at time t is given as

wβ1 =

∑T
i=0 f

β1|β2
i∑

∀β2

∑T
i=0 f

β1|β2
i

(6.8)

This probability is then used to weight the observation likelihood obtained through

colour similarity to obtain a posterior probability of a match, across spatially sep-

arated cameras. Bayes provides a method to estimate the posterior.

P (A|B) =
P (B|A)P (A)

P (B)
(6.9)

where P (B|A) is the prior conditional probability P (Ot|Oβ2) from equation 6.7

and P (A) the observation likelihood Hβ1β2. Thus the posterior for a newly de-

tected object β1 being object β2 at time t can be given by

P (Oβ2|Oβ1) = observation ∗ prior = P (Oβ1,t|Oβ2) ∗Hβ1β2 (6.10)

Tracking of objects is then achieved by maximising the posterior probability

within a set time window.
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6.7 Scalable Framework

Within a large network it is not feasible to allow every sensor to communicate

directly with every other sensor; the results of which would swamp the physical

network with irrelevant information and waste valuable memory and processing

time. This section discusses design considerations for large surveillance networks

and how the proposed method is scalable. As the number of cameras increase in

the network, the architecture of the network and data communication between

modules become an important consideration. Traditional systems are based on

a client server architecture. With the server receiving and processing all the

video feeds. Communication between cameras is then carried out within the

server ensuring high speed. However, as all processing is performed by the single

core server, should the server fail, the whole network would be immobilised. In

addition, the network would be limited by the processing speed of the server, and

adding further cameras, would slow the overall performance.

An alternative which this technique utilises is based is a decentralised network

which operates as a Peer-to-Peer network. In a Peer-to-Peer architecture, there

are no servers or clients, but only equal peer nodes that function simultaneously

as both “clients” and “servers” to the other camera nodes on the network.

6.7.1 Scalable Learning and Tracking

The main bottleneck of a peer-to-peer implementation is the increased bandwidth

requirements between camera nodes. Therefore, the minimum amount of com-

munication between cameras is essential. When a person is detected on a camera,

they will be tracked within the camera while visible. As the object exits the cam-

era, their descriptor and the leaving position is broadcast to all other cameras to

be stored locally. As each camera doesn’t record the level of region subdivision

at the destination of its links, a formalised labelling of the region link is used.
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The technique is based on a rectangular region subdivision where each camera is

divided into 16 regions. To allow for a scalable technique, each region has a 4 digit

number which corresponds to the level of subdivision the region has undergone

and its originating camera. Initially there is one region per camera, this allows

immediate tracking with the links initially uniformly distributed. Figure 6.10

shows how the subdivision takes place for camera X, with the region ID adding

an additional digit for each subdivision. At the first level of subdivision, a single

Figure 6.10: The First3 levels of region subdivision with their associated num-

bering. The star indicates a highlighted region and its ID below. (a) shows the

initial camera regions, (b) after 1 sub division and (c) after two subdivisions.

digit is used, then when subdivided another digit is added (Figure 6.10b). This

means that the complete ID for each region also contains the ID for the higher

level regions, i.e. the ID X113, says that region 113 is part of the region 11 at a

higher level which in turn is part of the region 1 on camera X. This means that

links between two cameras can be constructed at the highest resolution support

by both cameras. In the example of Figure 6.11, a person has just left camera 1,

allowing camera 1 to broadcast their descriptor, along with the exit region which

is 13, making the region ID 113 to all other cameras. A new person appears on

camera 2 and will use the descriptor from 113 to the new region (211) on its

camera as required. However, when another person is detected on Camera 3, the

region on camera 3 has a link to camera 1 at a less detailed level due to lack of

data. Therefore camera 3 will use the link between region 1 on camera 1 and
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region 2 on camera 3. Both cameras 2, and 3 use the same formalised region ID

despite them having links to camera 1 that were at varying levels of detail.

Figure 6.11: Example of the scalable region linking based around a formalised

region ID system with the person in camera 1 linked to cameras 2 and 3. With

a detailed link to camera 2 from region 13 to region 11, and a less detailed link

to camera 3 from region 1 to region 22.

For an operator to track a specific object, the operator communicates with the

camera the object is currently on, setting a tracking flag. Then as this objects

leaves the camera, it is broadcast with the tracking flag. When another camera

finds a correlation to the flagged object, the operator is informed of the event

without further communication to the original camera. Other cameras that find

further correlation within the time threshold also inform the operator about the

matches. This allows the operator to make a decision from the top ranked matches
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returned.

6.8 Experimental Results

This section demonstrates the performance of the techniques proposed for track-

ing objects across up to eight uncalibrated overlapping or non overlapping cam-

eras.

6.8.1 Experiment Setup

The experimental setup consists of eight colour cameras with overlapping or non-

overlapping fields of view in an indoor office environment, with the layout shown

in Figure 6.2. They are located over two floors, with four cameras on each floor,

with a large 40 second gap between the floors. The areas not visible between

cameras contain doors, corners and stairs ensuring no straight-line trajectories

or linear velocities are possible between cameras. The eight time synchronised

video feeds are fed into two P4 Windows PC in real-time. Figure 6.2 previously

showed the layout the eight cameras over two floors.

6.8.2 Comparison to Batch learning processes

Most traditional methods of tracking objects inter camera, [30] [52], use a batch

learning process to identify areas of interest, rather than incremental learning. A

batch process technique is included within these results, to compare the effects

on performance. After data collection, K-means is performed with five regions

on each camera to cluster the entry/exit positions (see Figure 6.12). One disad-

vantage of the batch technique is that there is no accuracy improvement until all
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data is collected, while the use of an incremental learning algorithm allows the ap-

proach to increase accuracy over time as more data is collected. This also makes

the proposed incremental technique more resistant to environmental variations

as changes are incorporated over time. Also the K-means algorithm is dependant

on upon k or the number of clusters which must be specified, this could cause

multiple exits to be grouped incorrectly. The entry/exit regions resulting from

the batch K-mean clustering technique can be seen in Figure 6.12(a), the larger

the circle the more important the region. It can be seen that the incrementally

learnt regions shown in Figure 6.12(b) are similar in position and importance

(white is most important) to the batch learnt approach using all the data.

Figure 6.12: (a) shows the main entry and exit regions computed using a batch

technique, size of the circles indicates the importance of entry/exit regions. While

(b) shows the main entry and exit points using the incremental approach

6.8.3 4 Camera Setup

Initially the four cameras from the top floors were used for a detailed investigation

into the learnt cues. There is no calibration of the camera environment with no

a priori information about its environment. Over time additional information

is incorporated. The experimental data was accumulated from 9am for 3 days
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(72 hours), tracking a total of 7854 objects. Evaluation of the tracking was

performed using two separate unseen ground-truthed 20 minute sequences each

with 200 instances of people tracked for over one second. The two video sequences

are quite different (see Figure 6.13 for examples of objects);

• Test Video1, This has a large number of new unique people, people walk-

ing in groups and the intra camera tracking failing intra camera due to

erratic and slow movement.

• Test Video2, This consists of people moving cross camera, with fewer new

unique people.

Figure 6.13: An example of some of the detected objects from both videos. The

box indicates a tracked object.

Initially, the approach tracks using only the CLUT colour similarity between

objects. Objects are tracked by maximising the posterior probability within a set

time window, T . For these experiments, T is 40 seconds, where the cameras are

close, provided the maximum peak exceeds the noise floor. While incrementally

learning the inter camera relationships of the previously discussed weak cues,

the system goes through a number of region size subdivisions. The first possible
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subdivision is after 1 hour, the next after 4 hours of operation, the third division

is after 8 hours which corresponds to 1 full working day from 9am-5pm. The

final possible subdivision level is reached after 32 hours which is two full working

days. After 56 hours (three full working days) no further subdivisions take place

but additional data is continually added to the prior until 72 hours (three full

days) has passed. At each stage, the accuracy of all techniques for tracking;

CLUT colour alone, posterior region links, posterior bounding box, and calibrated

RGB colour, are measured. Table 6.2 shows all the single cues across the region

subdivision sizes. The abbreviations for the similarity measures used are:

• HI(CLUT) - Histogram intersection of the CLUT colour descriptor.

• Reg - Maximising the posterior probability using the incrementally learnt

prior on reappearance period.

• BB - Maximising the posterior probability using the learnt prior on object

exit and entry size.

• HI(RGB) - Histogram intersection of the colour calibrated quantised RGB

colour descriptor.

• Batch - Comparison technique of reappearance period prior computed using

entry and exit regions derived through a batch processed K-means method.

Table 6.2 shows the initially poor performance of the individual descriptors. Over

time accuracy improves, reaching 65% for Video2 using calibrated RGB after

one working day or 8 hours. Note that after 8 hours, the priors are relatively

stable and little benefit is gained from the addition of a further 2 days worth of

observations.

At each stage of region refinement the accuracy of most techniques increases.

After 72 hours and 7854 objects, each camera region has been subdivided at
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Table 6.2: Table of results of using the individual descriptors with no fusion with

subdivision of regions as additional data is accumulated with up to three days of

data.

Video Method Accuracy:

Initial Sub1 Sub2 Sub3 Sub4 Sub4 Sub4

Time (Hr) 0 1 4 8 32 56 72

Data (People) 0 367 1372 2694 5264 7612 7854

Video1

HI(CLUT) 50% 50% 50% 50% 50% 50% 50%

Reg 33% 41% 45% 45% 44% 44%

BB 42% 49% 55% 58% 60% 60%

HI(RGB) 32% 45% 51% 53% 53% 55% 57%

Video2

HI(CLUT) 47% 47% 47% 47% 47% 47% 47%

Reg 33% 40% 51% 51% 51% 52%

BB 58% 64% 64% 64% 64% 64%

HI(RGB) 40% 58% 62% 65% 65% 66% 67%
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most 4 times, with Figure 6.14 showing the main entry/exit areas discovered by

the approach.

Figure 6.14: The main discovered entry and exit regions and a top down layout

of the camera environment with these regions marked.

In order to increase the accuracy of inter camera tracking, we can fuse different

descriptors together by multiplying the likelihoods as discussed in Section 6.4.

This helps to remove some of the limitations of the individual cues. Table 6.3

shows the results of fusion over the same time period and subdivision intervals as

Table 6.2. Some descriptors are not shown such as BB*HI(CLUT) as these per-

formed worse than its colour calibrated equivalent BB*HI(RGB) which is shown.

Table 6.3 shows that the tracking accuracy has been increased from 50% to 73%

and 47% to 79% on video1 and video2 respectively when using all three cues

(BB*Reg*HI(RGB)) and 8 hours of data (1 working day). Combining all three

weak cues together improves accuracy as it removes some of the limitations of

each. Table 6.3 also shows that accumulating a further 2 days of data provides

little improvement in accuracy over the cues constructed after only a day, demon-

strating quick convergence upon a good solution. However, as data is accumu-

lated, the posterior match becomes increasingly accurate and this can be used to

provide a better correlation for the calculation of the priors. Table 6.4 uses one
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Table 6.3: Table of results of using fusing the individual descriptors to increase

tracking accuracy from start-up with up to a total of 3 days of data.

Video Method Accuracy:

Initial Sub1 Sub2 Sub3 Sub4 Sub4 Sub4

Time (Hr) 0 1 4 8 32 56 72

Data (People) 0 367 1372 2694 5264 7612 7854

Video1

CLUT 50% 50% 50% 50% 50% 50% 50%

Reg*CLUT 50% 55% 62% 61% 62% 64%

Reg*RGB 55% 64% 68% 69% 69% 69%

BB*Reg 49% 52% 55% 56% 56% 58%

BB*RGB 59% 63% 67% 67% 67% 69%

BB*Reg*RGB 57% 62% 71% 71% 73% 73%

Batch 50% 50% 50% 50% 50% 50% 67%

Video2

CLUT 47% 47% 47% 47% 47% 47% 47%

Reg*CLUT 60% 62% 72% 73% 74% 75%

Reg*RGB 64% 66% 74% 75% 77% 77%

BB*Reg 55% 57% 65% 66% 66% 66%

BB*RGB 66% 72% 74% 76% 78% 78%

BB*Reg*RGB 66% 72% 78% 79% 79% 79%

Batch 47% 47% 47% 47% 47% 47% 76%



6.8. Experimental Results 127

working day of data with three iterations. Each iteration results in an increase in

accuracy allowing less false positive correlation to corrupt the three cues. How-

ever it can be seen that the benefits from this iterative refinement again stabilise

quickly . The results of batch learnt links using k-means was combined with his-

togram intersection on CLUT (labelled Batch in the figure) and can therefore be

directly compared with the results of Reg*HI(CLUT) in Table 6.3. Here it can

be seen that batch learning only gives a marginal benefit over the incremental

learning scheme. However, this slight increase in performance is only gained at

subdivision 4 after 72 hours when all the data is available while the incremental

scheme provides a gradual increase in performance as data is acquired.

Table 6.4, iteration 4 shows the results of the approach after the improvements

of the earlier iterations with the extra data from all 3 days and provides only

marginal improvements. These methods improve accuracy due to the minimisa-

tion of incorrect matches in the forming of region links and the other cues. This

provides a final accuracy of 83% without data being added, or a small increase to

85% if two more days of data is used. Therefore using the extra 2 days data gives

little or no improvement, again demonstrating the technique quickly converges

on a stable solution after only 8 hours of camera monitoring. Figure 6.15 gives

a visual representation of the accuracy increase over one day of data shown in

Tables 6.2, 6.3 and further iterations in Table 6.4. The large increase in initial

tracking accuracy from using only colour histogram intersection with the CLUT

colour space can be seen. This large increase in accuracy fulfil the three ideals

stated in the introduction, of working immediately, improving performance as

additional data is captured, and an ability to adapt to environmental changes.
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Table 6.4: Table of results of three iterations of the technique after one day of

data, but with no new data collected. And results of using 3 days of data after

iterating and refining accuracy.

Video Method Accuracy:

Iteration1 Iteration2 Iteration3 Iteration4

Time (Hr) 8 8 8 72

Data (People) 2694 2694 2694 7854

Video1

CLUT 50% 50% 50% 50%

Reg*CLUT 64% 64% 64% 66%

Reg*RGB 71% 72% 74% 73%

BB*Reg 55% 57% 59% 58%

BB*RGB 70% 70% 73% 73%

BB*Reg*RGB 73% 70% 75% 77%

Video2

CLUT 47% 47% 47% 47%

Reg*CLUT 72% 72% 72% 75%

Reg*RGB 78% 79% 79% 77%

BB*Reg 66% 65% 67% 66%

BB*RGB 74% 77% 77% 78%

BB*Reg*RGB 78% 83% 83% 85%
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Figure 6.15: A graph showing the increasing accuracy with subsequent iterations

of the methods using Video 2 up to iteration3.
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6.8.4 Using the probably to rank the matches in order

Until now, the performance measure was based upon using the top ranked match

against the correct person. As each possible correlation returns a likelihood score

of a match, these can be presented in a ranked list. This reduces the quantity of

data the operator has to process while improving accuracy. An example of this

is in Figure 6.16, here the correct match is the third ranked. As all three results

have a similar appearance with likelihoods, 0.15, 0.13 and 0.12 this indicates to

the user that there is some uncertainty. This uncertainly is partly responsible

Figure 6.16: The rank of the best matches to the operator instead of the single

optimum.

for the ceiling accuracy of 85%. However, by considering the top three ranked

correlations, the effective performance can be considered considerably higher.
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The graph in Figure 6.17, shows the result of this, based on the fusion of the
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Figure 6.17: Using ranked matches to improve accuracy of tracking.

bounding box, region links and histogram intersection of the RGB model. The

incoming video stream is the top left image, with the lower left image showing

the current query object. On the right are three ranked matches. Scoring using

the top 3 ranked matches increases accuracy to over 90%.

6.8.5 8 Camera Setup

To challenge and test the technique an eight camera setup is used. The eight

camera setup introduces a large time gap between the two sets of four cameras.

The larger time gap is to test if learning incremental relationships inter camera

can operate with large temporal differences between the cameras. In addition

within the large gap there are a number of different exits. This means a person
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leaving camera 3 is only around 30% likely to enter camera 8, while it is likely

for a person leaving camera 4 to enter cameras 1 or 3. This could make it hard

to form any distinct relationships between camera, affecting the overall tracking

performance. However, the results show that this was not the case.

Due to the increased physical gap between the cameras on the two floors and

that cameras 5,6, and 7 have overlapping fields of view, T , the reappearance

period was adjusted to +/- 70seconds. This will caused a greater number of false

positive entries to be added to the cues, however a longer period of data will be

used to minimise this effect. To learn the relationships, a total of five days of

data was used. A total of 40584 people were recorded who were tracked for more

than 1 second. To test the performance, a one hour video sequence from the eight

cameras was groundtruthed. This contained 400 people moving both intra and

inter camera, in groups and singularly, Figure 6.18 shows a selection of frames

from the test sequence.

Figure 6.18: Example images from the test sequence.

Looking at camera 8 in Figure 6.18c and d there are false positive object tracks

on the lift and door. These occurred on numerous occasion due to the limitations

of the background segmentation. Figure 6.19 shows a subset of the resulting tem-

poral relationship priors, between regions at a camera to camera level. Looking



6.8. Experimental Results 133

Figure 6.19: The temporal links between different cameras are shown, the X axis

is time 0-70 seconds, the y axis the prior of P (Ot|Oy) as shown in equation 6.7.
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Table 6.5: Table of results of different cues using up to three iteration divisions

of the regions with a total of 5 days footage. Test data is 400 people over 1 hour

over all 8 cameras.

Video Method Accuracy:

Initial Sub1 Sub2 Sub3 Sub4 Sub4 Sub4

Time (Hr) 0 1 4 8 48 96 120

Data (People) 0 367 1372 8550 15250 31241 40584

Video3

CLUT 39% 39% 39% 39% 39% 39% 39%

Reg 53% 60% 66% 66% 66% 66%

BB 49% 54% 56% 59% 59% 59%

RGB 33% 47% 55% 58% 59% 59% 59%

BB*Reg*RGB 65% 68% 74% 76% 76% 76%

Batch 69%

at Figure 6.19 the peaks shown in the priors such as between cameras 3 to 8 and

3 to 2 show there is a strong link between these cameras. While the flatter links

between cameras 3 to 6 or 4 to 2, show there is no direct relationship between

the cameras. Table 6.5 shows the results of the groundtruth data on the 5 days

of footage. Performance is shown at various stages over the five days, with up to

3 possible region sub division occurring if a strong link has been found between

regions.

The results of the 8 camera tracker shown in table 6.5 are also displayed in graph

form in Figure 6.20. Looking at the results, the overall performance of the tracker

increases from 30% to 76%, and this occurs within two days of data, with the

performance stable for the remaining three days. It is interesting to note that the

temporal region linking cue (Reg) alone has a performance of 66% after 8 hours of
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Figure 6.20: Accuracy of inter camera tracker using up to 5 days data.
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Table 6.6: Table of results with the top 3 matches are used to match with the

tracked person. All the different cues using up to three iteration divisions of the

regions with a total of 5 days footage.

Video Method Accuracy:

Initial Sub1 Sub2 Sub3 Sub4 Sub4 Sub4

Time (Hr) 0 1 4 8 48 96 120

Data (People) 0 367 1372 8550 15250 31241 40584

Video3

CLUT 44% 44% 44% 44% 44% 44% 44%

Reg 68% 74% 79% 80% 81% 81%

BB 57% 59% 64% 65% 65% 65%

RGB 45% 50% 60% 61% 64% 64% 64%

BB*Reg*RGB 75% 81% 89% 91% 91% 91%

Batch 82%

data. This has no size or appearance information, only using the temporal prior

to compute where the object is likely to have come from. The success of this

over appearance alone shows how important it is to learn patterns of activity,

especially when false positive detections (as in Figure 6.18c and d, camera 8)

would cause the appearance correlation to fail.

To improve performance, the tracking was extended in a similar way to that

in Section 6.8.4, to use the top three possible matches instead of just the first.

Table 6.6 and graph 6.21 show the results, over the same 5 days of footage, where

instead a success is if the person is correctly found in the top three matches.

Using the ranked top three matches increases the performance from a low 44% to

a high of 91% using all three cues of colour, temporal and size to weight a simple

appearance correlation. A batch technique is unable to increased performance
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Figure 6.21: Accuracy of inter camera tracker using up to 5 days data.
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until all data has been collected, and then achieves 82% accuracy. Looking at

the tracking accuracy of individual cues in Table 6.5, the temporal relationships

between regions on the cameras is influential, with it alone being able to label

81% of people inter and intra camera correctly. This is important as the colour

matching is heavy affected by the moving doors and lighting changes that occurs

on cameras 5 to 8.

6.9 Conclusion

This chapter has shown a technique that is able to learn relationships between

regions within cameras to track people between up to eight cameras over a wide

area indoor site. The use of three individually simple and weak cues allows for the

technique to be run in real time (25fps) and when fused together a powerful prior

for object tracking is created. This works with no a priori information or cali-

bration of the cameras. Examining the ideals of a real time tracker presented in

the introduction of the chapter. If can be seen that this method addresses all the

statements. Upon initialisation it is able to work immediately, its performance

dramatically improves as new evidence becomes available, and due its subdivision

and re-examining of the regions is adaptable to changes in the camera’s environ-

ment. The method has been tested on three different manually groundtruthed

video sequences using up to eight camera with overlapping and non-overlapping

fields of view. The technique has also demonstrated that the cross camera region

linking can operate with cameras of considerable separation, where objects may

take up to 40 seconds to reappear on another camera.
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Discussion and future work

The aim of this work was to track and maintain the identity of moving objects

on cameras in a scalable approach, that adapts to the camera environment. So-

lutions for a number of challenging problems within the field of object tracking

have been presented. A technique to track and maintain an object’s identity

through a scene of crowded people was presented, together with a number of

solutions to allow people to be tracked between multiple, uncalibrated cameras.

Both techniques were based on an object’s appearance descriptor, therefore, an in

depth investigation into possible methods of constructing appearance descriptors

to ensure optimum efficiency and detail was conducted.

Three different methods used in the construction of appearance descriptors were

examined in chapter 4. The size of the quantisation, the colour space and the

correlation methods, were examined for both intra and inter camera tracking con-

texts. In both intra and inter camera environments, the Bhattacharyya coefficient

measure provided good correlation between the true positive results, while having

a good separation from the false positive results. The use of Parzen-Windowing

when constructing RGB histograms reduces both over and under fitting of data

due to incorrect bin size selected for the number of samples available. With the

139
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use of an In-Parzen window during construction, RGB gives the highest perfor-

mance of the colour spaces, improving overall performance of correlation across

the complete range of bin sizes. For an application with real-time constraints a

compromise using the manually defined Colour Lookup Table colour space was

demonstrated to have a similar performance. However, at times, the low quanti-

sation size, means the histograms are underpopulated, causing intermittent cor-

relation failures.

A technique to track individuals within a crowded scene was presented in chap-

ter 5. Novelly, it used the strengths of separate global and local methods fused

with dynamic programming. A head and shoulder detector with a global search

area was used to detect the location of people. The responses of the head and

shoulder detector are taken as observations of the human hypotheses. These

were tracked with a localised frame-by-frame Mean Shift optimisation until the

appearance of the tracked object is deemed corrupted due to occlusion or drift.

These short tracklets produce an over complete trajectory path of all people.

Dynamic programming is used to find the least-cost path through the sequence.

Two additional learnt models of human motion refine the least-cost path. These

apply motion constraints at a pixel level and detection level to identify and re-

move outliers. Four different and challenging sequences of people interacting and

occluding were used to test the technique. Promising results for many of the

people were shown for the single uncalibrated camera sequences.

In addition to the tracking intra camera, work to bridge the gaps between un-

connected non-overlapping uncalibrated cameras was presented in chapter 6. A

technique to learn how people’s appearance and movement relate between cam-

eras was used to improve basic observation likelihood correlation. Up to 8 cameras

were used with simple weak descriptor cues to enable real-time operation (25fps).

The weak cues were fused together with the objects appearance to form a powerful

correlation descriptor. No pre-calibration or environmental information was pro-
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vided to the cameras, making the technique ideal for larger networks of cameras.

The incremental learning allows for an improvement in performance throughout

learning. This is unlike a batch process, as a batch process can only work once

all data has been collected. The constant refinement of the camera relationship

cues, allows for continuous performance improvement during operation.

There is no a priori information or calibration of the cameras. Upon initialisation

it is able to work immediately, its performance dramatically improves as new

evidence becomes available, and due to its subdivision and re-examining of the

regions is adaptable to changes in the camera’s environment. The method has

been tested on three different videos, these are manually groundtruthed sequences

using up to eight camera with both overlapping and non-overlapping fields of view.

Generic techniques with novel contributions to track and correlate moving objects

on two different challenging environments have been presented. The intra camera

tracking of people within complex crowd interactions is possible with the two part

approach of detection and tracking. While an incrementally learnt approach of

inter camera tracking over eight cameras separated up to 40 seconds in real time

with no calibration or a priori information has been shown to correlate object

successfully.

7.1 Future Work

In order to take the theorems and techniques represented within this work fur-

ther, it could be applied to an outdoor environment, which has scope to be much

larger. After the successful test on linking camera between two floors (40 sec-

onds apart), it should be possible to link further cameras. Future work would

investigate the limitations of trying to extend the techniques to larger external

deployments over square miles of urban environment where both people and ve-

hicles operate and interact. Most of the problems this would create would be
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within the low-level intra camera tracking. Including problems, such as increased

shadows, and increased numbers of occluded people, while the pixel resolution

of the overall moving objects would be reduced. This would reduce the samples

in the appearance histograms, however the Parzen windowing or CLUT methods

are designed to compensate for this.

The actual higher level learnt cues described in the inter camera tracking work,

are generic in their design allowing them to be applied to this outdoor work with

little modification. In addition, it would be interesting to test the cues within

a different object field or environment. For example learning the relationships

between road surveillance cameras, similar to the work of Huang and Russell [42].

The traffic patterns could be learnt for normal traffic, allowing for abnormalities

to the camera relationship model to be identified and flagged. An implementation

of the technique within an underground station would allow monitoring of a wide

area. However for this to be effective, accurate multiple person tracking would

be required.

Within the work for the crowd tracking despite the encouraging results, there is

much scope for future improvement. The main reason for failures was the lack of

tracklets covering trajectories, - this was due to two problems. Firstly, if a person

was occluded for a long period behind someone else, their best path would fail to

correlate again once the occlusion ended as the motion and colour models would

fail. Secondly despite the high detection rate of the head and shoulder detector, it

produces many false negative results for people facing away from the camera, and

without these seed locations, no tracklets can be produced. To solve this, part

body detectors could be implemented similar to that proposed by Wu and Neva-

tia [111] to provide additional seed positions. To further enhance tracking, the

motion of features within the crowds could be used, Browstow and Cipolla [19]

and Rabaud and Belongie [87], both use clustering of local features to count peo-

ple within a crowd. In the current system, the human head and shoulder detector,



7.1. Future Work 143

is learnt off-line, using manually found training examples. However during the

learning of the human motion motions, general detectors could be trained on

specific examples found in the training period. This could achieve both higher

accuracy as detection would be tuned to the environment. Another method to in-

crease speed, would be to relate the tracking back to the detection, as the tracking

optimisation could restrain the detector to the surrounding neighbourhood.
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