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Figure 1. Deformable style transfer using DIFF-NST, compared to baselines: NNST [13], CAST
[41], NeAT [25], and PARASOL [31]. Our DIFF-NST method performs style transfer with much

stronger style-based form alteration - matching the shapes and structures to those in the style image,
not just the colors and textures. More in Fig 9. Zoom for details.

Abstract

Neural Style Transfer (NST) is the field of study applying neural techniques to
modify the artistic appearance of a content image to match the style of a reference
style image. Traditionally, NST methods have focused on texture-based image
edits, affecting mostly low level information and keeping most image structures
the same. However, style-based deformation of the content is desirable for some
styles, especially in cases where the style is abstract or the primary concept of the
style is in its deformed rendition of some content. With the recent introduction of
diffusion models, such as Stable Diffusion, we can access far more powerful image
generation techniques, enabling new possibilities. In our work, we propose using
this new class of models to perform style transfer while enabling deformable style
transfer, an elusive capability in previous models. We show how leveraging the
priors of these models can expose new artistic controls at inference time, and we
document our findings in exploring this new direction for the field of style transfer.
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1 Introduction

Neural Style Transfer (NST) aims at re-rendering the content of one image with the distinctive visual
appearance of a second style image, typically an artwork. Most prior work has focused on low level
style, represented as colors and textures. However, artistic style covers a broader gamut of visual
properties, including purposeful geometric alterations to the depicted content, often called form [37].

We introduce a novel NST approach that considers not only low level color and texture changes but
also higher level style-based geometric alterations to the depicted content. We aim to maintain the
object structure to resemble the original content image and remain identifiable as such. But with
style-based deformations of the content reflecting the artist’s original intent as they depicted their
original subject matter in the exemplar artwork image. Such content deformations have been more
challenging to achieve, given a need for a higher level spatial semantic understanding of subject
and/or scene information [11].

Learning priors regarding the interplay of artistic style, semantics, and intentional deviations from
photo-realistic geometry is non-trivial and not generally a part of NST pipelines. However, recent
diffusion-based image generation literature has made impressive progress in modeling various visual
concepts [19, 20, 3], accurately modeling how objects fit into the world around them.

We leverage these extensively learned priors in our work, adapting them to NST. We adapt them in
our DIFF-NST model to function without text prompts in an exemplar-based setting, similar to more
traditional NST. Text-less exemplar-based is desirable for some stylistic edits, as textual prompts
would require extensive descriptions of the style, which may be difficult or impossible to articulate
fully. We build the first NST model to make significant high level edits to content images. We
compare our work to several baselines and show state-of-the-art user preference in user studies.

2 Related Work

The seminal work of Gatys’ Neural Style Transfer (NST) [7] enabled neural techniques for transferring
the artistic style appearance of a reference artwork to an unstylized depiction of some content -
typically a photograph. Follow-up works created feed-forward, optimization free approaches to
achieve this [9, 15]. Other techniques for NST emerged, such as optimal transport [12], hyper-
networks [24], and Neural Neighbours [13]. Attention based techniques later emerged [17, 16], with
further follow-up improvements to contrastive losses [4, 41], and scaling to high resolution with
improvements to robustness and detail propagation [25]. Deformation in style transfer has been
explored in previous work [11], based on detecting shared keypoints between the style and content,
thereby limited by a shared depicted subject. Regarding fine-grained representation space for artistic
style, ALADIN [22] introduced the first solution to this training over their fine-grained BAM-FG
dataset. This was later evolved into ALADIN-ViT [23] using a Vision Transformer [5] for stronger
expressivity, and later as ALADIN-NST [26], with stronger disentanglement between content and
style by changing BAM-FG [22] for a fully disentangled, synthetic dataset.

Within the generative image domain, sizeable text-to-image diffusion models such as Dall-e 2
[19], Parti [36], Imagen [27], and e-Diffi [3] have recently made significant advances in image
generation fidelity and control, enabling free-form text prompts as an input control vector for guiding
image synthesis, with unprecedented quality. These models are trained on large datasets and require
prohibitive amounts of computation. Latent Diffusion Models [20] introduced the concept of applying
the diffusion process to a smaller, latent representation of images rather than operating in pixel space
like the previous works. This dramatically reduces the compute requirements for training and, more
importantly, inference. Stability AI [1] democratized comprehensive open access to such models by
open sourcing weights for an LDM trained on a subset of the LAION [28] dataset.

Much follow-up research has been enabled and built on these pre-trained weights, known as the
Stable Diffusion model. Due to the still prohibitive training costs, several works have studied the
personalization of existing pre-trained model weights for new concepts, such as Dreambooth [21],
Textual Inversion [6], and Custom Diffusion [14]. Other works have studied enabling new ways
to control these models for tasks such as subject-oriented editing [18, 35, 10]. Or focusing on
more general image editing based on text-based prompt changes [33, 8, 34]. However, most of
these techniques aim at semantic changes or require text-based prompt changes. Text-less exemplar-
based stylistic edits have not commonly been explicitly explored with diffusion models. Recently,
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PARASOL [31] has used an ALADIN-ViT style embedding to perform style-based image generation,
with some capabilities of maintaining content structure.

3 Method

To push beyond the traditional boundaries of texture-only style transfer, we wish to leverage the
significant learned model priors such as Stable Diffusion [20], having been trained on large amounts
of data, with typically inaccessible amounts of compute. In our approach, as shown in Figure 2
we freeze the pre-trained weights and train several modules of fully connected layers in each UNet
self-attention block. We interleave pre-extracted content noise used for shapes and composition and
the style attention values from the style image. These are used across reverse diffusion timesteps,
generating a final stylized image using content and style information extracted from the interleaved
data.

3.1 Preliminary analysis of style information in attention space

Prior work [34] has shown that early diffusion timesteps affect an image’s global structural and
compositional information, whereas later timesteps affect local fine details. Inspired by this, we set
out to determine which timesteps of the diffusion process control style and which control content.

Given a lack of research around exemplar-based Neural Style Transfer with diffusion models, we
use a prompt-based model, prompt-to-prompt [8], to carry out this visualization. We use ChatGPT
[2] to generate 20 content prompts, and we further define 10 style modifier prompts. With the
prompt-to-prompt pipeline (operating over the Stable Diffusion LDM weights), we use the content
prompts to generate reference content images, and we combine each content prompt with each style
modifier prompt to re-generate the content images with the different explicitly defined styles still
using prompt-to-prompt [8]. At the end of the process, we have 20 reference content example images
and 200 "stylized" images. During the generation process, we extract attention values for analysis.
We average the differences between the content example images’ attention values and each of their
10 stylized variants’, at each timestep. Fig 1 in the supplementary materials visualizes the average
differences between these attention values at the diffusion timesteps. The red indicates a larger
difference between the original content image and its stylized versions. Given that the structural
and compositional information of the example content and their "stylized" counterparts is similar,
we can infer that the stylistic differences relate to the higher attention discrepancies found at the
later timesteps. This preliminary exploratory experiment clarifies the different effects of diffusion
timesteps across the LDM generation process.

An additional preliminary experiment using these prompt-to-prompt images is an analysis of where
the style information is captured in the LDM activations. We explicitly focus on the attention
mechanism, where Q, K, and V values are used in the attention process [32]. We generate a base
non-stylized image with the content prompt and then stylized variants with style modifier prompts.
We extract attention values from the content-only prompt generation and replace the attention values
of the stylized generation with those from the content-only generation. Doing so re-generates the
original, non-stylized image. However, in our analysis, we observe that interpolating between the V
self-attention values of the content/style-modified generations (while using only the original content
values for the rest) can provide control over the stylization strength. From this experiment, we can
infer that most, if not all, style information is captured from just the V self-attention values in the
LDM. We visualize examples of this style interpolation in the supplementary materials.

3.2 DIFF-NST real image inversion

Our work aims to perform style transfer of existing real user-provided images. As such, the re-styled
synthesized image must stay faithful to the provided content image in terms of overall composition
and structure. This means we must edit the image rather than re-generate a semantically similar
approximation. We invert the content image through the LDM, similar to previous works such
as prompt-to-prompt [8] and diffusion disentanglement [34]. This inversion process extracts the
predicted noise at each timestep, as predicted by the UNet modules. To reconstruct the same image
using an LDM, this content noise can be injected into the reverse diffusion process, replacing the
LDM noise predictions at multiple timesteps. The more timesteps the noises are applied to, the better
the reconstruction fidelity, with less freedom of input from the LDM. As shown in the diffusion
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Figure 2: High level visualization of our diffusion-based neural style transfer process. (left) Trainable
MLP in the self-attention blocks of the LDM Unet modules. (right) Attention values and ALADIN
style codes are extracted from the style image. The content image is re-colored by the style image,
after which the LDM extracts content noises from it. These are interleaved into the reverse diffusion
process at multiple time steps to generate a stylized version for the loss objective. Green modules are
trainable, and blue modules are frozen.

disentanglement work [34], applying changes to the diffusion values from an earlier timestep allows
more significant change in image structure.

Similar to these previous works, we use 50 time steps for the forward (inversion) and reverse (re-
generation) diffusion processes. However, unlike these previous works, we interleave this noise
starting from an earlier time, step 5, rather than 16, to improve reconstruction quality. We apply noise
until step 45 instead of 50 to allow the model to self-correct some artifacts. Also, unlike prior work,
we do not set the LDM predicted noises to zero for timesteps where pre-extracted content noises are
not injected into the diffusion process. We aim to allow the model to generate new details to leverage
its learned priors.

A notable trait of image-to-image and image-inversion with diffusion models is that color information
is not disentangled from overall image structure across timesteps, as it is with feature activation
across layers of a VGG model, for example. Thus, color information must be explicitly handled
before inversion. Similar to previous works [38, 25], we pre-adjust the color of the content image
through mean and covariance matching. We do this dynamically during training before inversion.

A final consideration is that we aim to perform prompt-less execution of LDMs, given our use of
exemplar images for both content and style. As such, we only need to use the model’s unconditional
capabilities. Latent Diffusion Models execute two iterations of their model: one with no prompt
conditioning and one with prompt conditioning. The output of both branches is joined at every time
step via the classifier free guidance (CFG). This exposes prompt control via this adjustable strength.
Given that we aim not to use any text prompts anywhere in the process, we, therefore, altogether
disable the prompt-conditioned branch of the model execution and use only the un-conditional branch
for both inversion and reverse diffusion. The process would function the same if the text prompt were
fixed to a generic prompt throughout or if CFG was zero, but this approach saves on compute.

3.3 Attention manipulation

We train a set of MLPs across each self-attention module in the LDM UNet blocks. We do not wish
to re-train or fine-tune the LDM weights due to large compute/financial requirements. Instead, we
train several smaller modules to hijack part of the LDM process, similar to how content noises are
injected into the diffusion process. We directly target the attention process’s V values, generating
brand new values for the remaining process to use. We chose the V values following our initial
exploratory experiments with existing text-prompt-based diffusion image editing techniques such as
prompt-to-prompt, where we observed that interpolation between V values only is enough to induce
stylistic changes between content prompts and style-modified prompts.

Before our reverse diffusion process, similar to the real content image inversion to collect the noise
predictions for reconstruction, we additionally invert and fully reconstruct the real style image through
the LDM. This time, instead of collecting the predicted noises, we collect the predicted attention V
values at every location and timestep and interleave them into the reverse diffusion process. Here,
the MLPs generate the new V values based on an input consisting of the current V values, the
corresponding V values at the same location and timestep of the style image, and the ALADIN
style code of the style image, which we also pre-extract. We use both the style attention values and
ALADIN, as this provides both global and local style information. Using only the attention values
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Figure 3: Visualization of style code ablation. The more disentangled ALADIN-NST [26] embedding
carries over less semantic information from the style images.

induces a similar style transfer. Anecdotally, however, using both sources of style information leads
to a higher overall perceived quality of style transfer. We use the more recent ALADIN-NST [26]
variant of ALADIN, as it is more disentangled, capturing less content information. This helps to
avoid semantic content creeping into the stylized image from the style image, as shown in Fig 3.

A final consideration is that we only apply this attention manipulation process to the UNet de-
coder/upscaling layers, as per ControlNet [39]. Similar to their findings, we notice no perceivable
differences in the output quality, but the VRAM consumption and compute costs are lower.

3.4 Training process

Diffusion models are typically trained one random timestep at a time, given the nature of focusing the
training on noise predictions at individual timesteps. In our case, however, such timestep-localized
deltas are not as easy to isolate. We can only guide our model during training based on the final
de-noised output image. Moreover, well known existing style losses have been designed to operate in
pixel space. They are, therefore, not directly applicable to latent space - though this may be an area
of potential future study.

Therefore, we build our training process around unrolling the entire diffusion process, from starting
to ending timesteps. We then decode the latent values into pixel space, where we can finally apply
standard NST losses amongst the stylized and real style images from our style dataset. We opt to
keep these style learning losses similar to previous works to reduce variables and uncertainty from
our work. We follow a similar training objective to recent works such as NeAT [25], ContraAST [4],
and CAST [41] - described in detail in Sec 3.5. We can report some negative results in using the
LDM UNet as a noised feature extractor for computing a VGG-like style loss to avoid the unrolling
process - the features extracted by the UNet did not accurately model the image style features.

3.5 Training objective

We train our model using well explored training objectives from traditional NST methods to focus
solely on the model technique - we most similarly follow training objectives resembling those of
NeAT [25], ContraAST [4], and CAST [41]. Between style and stylized images, we use a VGG [30]
style loss (Eq. 1), identity loss (Eq. 4), contrastive loss (Eq. 7), sobel-guided patch discriminator (Eq.
9), domain-level discriminator (Eq. 2), and ALADIN loss (Eq. 6). Between the stylized and content
images, we use a perceptual loss (Eq. 3), contrastive loss (Eq. 8), and identity loss (Eq. 5). We use
Sobel guidance for the patch discriminator, as per NeAT.

Equation 1 shows the VGG style loss, with µ and σ representing the mean and standard deviation of
extracted feature maps, Is represents style image from the style dataset S, Ic represents a content
image from the content dataset C after the color adjustments, and Isc represents the stylized image.
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Ls := λvgg

(
L∑

i=1

∥µ (ϕi (Isc))− µ (ϕi (Is))∥2 + ∥σ (ϕi (Isc))− σ (ϕi (Is))∥2

)
(1)

Eq 2 represents the domain-level adversarial loss, as per ContraAST [4], learning to discriminate
between generated stylized images and real artworks. Here, a discriminator D operates over the
stylized image, following our model M modules. Eq 3 details standard perceptual loss, where ϕi

represents the pre-trained VGG-19 layer index.

Ladv := λadv

(
E

Is∼S
[log (D (Is))] + E

Ic∼C,Is∼S
[log (1−D (M (Is, Ic)))]

)
(2)

Lpercep := λpercep (∥ϕconv4_2 (Isc)− ϕconv4_2 (Ic)∥2) (3)

Eqs 4 and 5 show MSE identity losses between the reconstructed images and the style or content
images, respectively. Eq 6 shows the ALADIN loss, with A representing the ALADIN model.

Lid_s := λidentity (∥Iss − Is∥2) (4)

Lid_c := λidentity (∥Icc − Ic∥2) (5)

Laladin := λaladin (∥A(Isc)−A(Is)∥2) (6)

Eqs 7 and 8 show contrastive losses as detailed in Sec 4.1, similar to [4] and [41], where ls and lc are
extracted style/content embeddings respectively, using a projection head, and τ is the temperature
hyper-parameter. The contrastive losses are applied over the averaged attention values per timestep.

Ls_contra := λc

− log

 exp
(
ls (sicj)

T
ls (sicx) /τ

)
exp

(
ls (sicj)

T
ls (sicx) /τ

)
+
∑

exp
(
ls (sicj)

T
ls (smcn) /τ

)


(7)

Lc_contra := λc

− log

 exp
(
lc (sicj)

T
lc (sycj) /τ

)
exp

(
lc (sicj)

T
lc (sycj) /τ

)
+
∑

exp
(
lc (sicj)

T
lc (smcn) /τ

)


(8)

The Lp term defined in Eq 9 is our patch discriminator Dpatch loss, guided by Sobel Maps (SM ).

Lp = λpatch

(
E

Is∼S
[− log(Dpatch (crop(Isc, SMsc), crops(Is, SMs)))]

)
(9)

Our final combined loss objective is shown in 10 where each term is weighted by their respective λ
term. The loss weights are as follows: λvgg = 0.5, λadv = 5, λpercep = 6, λidentity = 100, λaladin = 10,
λc = 1, λpatch = 10, λ1 = 0.25, λ2 = 0.75.

Lfinal := Ls+Ladv+Lpercep+Lid_s+Lid_c+Laladin+Ls_contra +Lc_contra +λ1Lp_simple+λ2Lp_complex
(10)

4 Experiments and Evaluation

Neural style transfer using diffusion models is a nascent sub-field of research. As such, very few
works study this new direction, much less via prompt-less techniques. Despite not being a strictly
NST model, PARASOL [31] is currently the only suitable method we can baseline against. We
additionally compare against three recent "traditional" NST techniques, NNST [13], NeAT [25], and
CAST [41]. These techniques have focused on texture-based style transfer, and as such, their stylized
outputs contain a much better match between the style and stylized images’ textures. This is reflected
in metrics such as SIFID [29], used in NST literature so far that precisely measure such correlations.
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Figure 4: Controlling the style-based content deformation of the stylized image at inference time by
varying the starting timestep to apply pre-extracted content noises from the content image inversion.

Figure 5: Controlling the stylization strength by varying the stopping timestep at which to apply
attention modifications. This inference-time control vector affects the content deformity less than
varying noise injection timesteps.

The unrolled approach of training diffusion models does incur a high computation cost. Our technique
can train over an LDM at 512px resolution on a GPU with 48GB VRAM at batch size 1. We use
gradient accumulation 8 to raise the effective batch size to 8. Inference at 512px fits on 24GB
VRAM. We train our model for 3 weeks on a single A100. Like NeAT [25], we use the BBST-4M
dataset they introduce, due to its great variety of style data, covering not just fine-art imagery as
more commonly found in other datasets. Due to our method and NeAT having been trained using
BBST-4M, we aim to use a test set with no overlap with training data. We use the test set from
ALADIN-NST [26], which was collected as a test set not overlapping with previous datasets such
as BBST-4M. The test set contains 100 content and 400 style images, resulting in 40,000 stylized
images. We collect quantitative metrics in Table 1, measuring SIFID [29] and Chamfer for style and
color consistency with the style image respectively, and LPIPS [40] for structure consistency with the
content. Due to long-running generation times for our method and those of multiple baselines, we
randomly sub-sample and use 5,000 images.

Table 1: Quantitative metrics.
Lower is better. ↓

Model LPIPS ↓ SIFID ↓ Chamfer ↓
NeAT [25] 0.624 0.880 24.970
CAST [41] 0.632 1.520 43.864
NNST [13] 0.633 2.007 53.328
PARASOL [31] 0.716 3.297 105.371

DIFF-NST (Ours) 0.656 2.026 45.777

Table 2: User studies for our model, for individual ratings (out
of 5), and 5-way preferences (%). Higher is better. ↑

Model Content Rating ↑ Style Rating ↑ Content Preference ↑ Style Preference ↑
NeAT [25] 3.271 2.952 32.222 26.000
CAST [41] 3.031 2.863 16.756 16.133
NNST [13] 2.937 2.712 21.200 17.778
PARASOL [31] 2.301 2.257 12.400 9.556

DIFF-NST (Ours) 2.751 2.973 17.422 30.533

We present a qualitative random sample of stylizations in Fig 9 and the supplementary materials. We
visualize stylizations using our method, the closest technically related work PARASOL [31], and
some traditional NST techniques.

The most impactful ablation to report on is experimenting with the style embedding used alongside
the style attention values. We show some comparative examples in Fig 3, having tested the regular
ALADIN-ViT style embedding and the more disentangled ALADIN-NST variant. The ViT variant
introduces some content features from the style image into the stylized image when these features
have strong activations - most commonly occurring with faces. Though rare, we mitigate this issue
using a fully disentangled style embedding, ALADIN-NST.
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Figure 6: Deformable style transfer, comparing to NNST [13], CAST [41], NeAT [25], and PARASOL
[31]. All our figures are generated using images from the ALADIN-NST test set, which were not
seen during training. More in the supplementary materials.
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4.1 User studies

We undertake a pair of user studies to gauge real life human preference amongst our method and the
baselines. First, we carry out an individual rating exercise, measuring the content fidelity between
the content image and the stylized image, and separately measuring the style consistence compared
to the style image. Second, we carry out a 5-way comparison, where we ask workers to select their
best preference from randomly shuffled samples. We bin the ratings in the individual exercise to five
levels, and we explicitly instruct what each rating level should represent. We include the definitions
in the supplementary material. We randomly sub-sample 750 stylized samples from the test set and
compare our method against each baseline on Amazon Mechanical Turk (AMT). We collect and
average our responses over 5 different workers for each comparison, and show our results in Table 2.

The results indicate that workers are scoring our DIFF-NST method low on the content information,
in both the ratings and preference studies. This is a positive result, as it highlights our technique’s
more substantial content deformation. The only model which scored lower is PARASOL. However,
as seen in our visual comparison figures, PARASOL tends to make significant conceptual changes
to the depicted content. It is not so much a technique for style transfer as it is for style-inspired
re-generation of similar semantic content. The results for our style-focused experiments indicate
that workers prefer our method to baselines in both individual ratings and 5-way preference studies,
which signifies a successful transfer of style while still deforming the content.

4.2 Inference controls

One key strength of our diffusion-based NST method is control over the structural deformity in the
represented content concerning the style image. The reference content information is injected into the
diffusion process by applying noises at each time step, pre-extracted from the content image inversion.
With diffusion models, the early time steps strongly affect the significant structural components of the
image, whereas the later timesteps affect lower level textural information. Therefore, by varying the
starting timestep at which these pre-extracted content noises are applied, we can adjust, at inference
time, how much the style should deform the content structure. This effect is difficult to evaluate
quantitatively, but we show two examples in Fig 4.

An alternative vector of inference-time control is varying the diffusion timesteps in which our
method’s attention replacement happens. By stopping at earlier timesteps, less style information is
injected into the diffusion process, reducing the stylization strength. Unlike reducing content noise
injection, this approach maintains the content structure better and more directly targets the style
properties instead of structure. We show examples of this second approach in Fig 5, using the same
example images as in Fig 4 for clarity.

5 Limitations and Conclusions
One limiting factor of our approach is that textures are not matched to the style image with as much
detail and fidelity as traditional NST approaches. This can, however, be alleviated by introducing a
conventional NST approach into the pipeline as a post-processing step.

Though rare, due to the one-to-one mapping between the content and style attention values, some
structure from some style images sometimes creeps into the stylized image. We can report negative
results experimenting with Neural Neighbours [13] in attention space, which resolved this issue, but
only at the cost of worse overall stylization quality. This is an area of potential future improvement.

One of the principal challenges with our method has been computation due to the unrolled nature
of the reverse diffusion process during training. Future work can explore the adaptation of the style
training objective to the latent space instead of pixel space, enabling non-unrolled training.

6 Broader Impact

Neural techniques for artistic image editing and generation offer new tools and capabilities for skilled
artists to take their work further than before. However, this does make the field easier to enter as
a novice. As such, existing novice-level artists may find more competition in this space, reducing
work opportunities. As digital art emerged, it offered new capabilities to artists with new tools at
the detriment of some artists using physical mediums. Neural techniques can similarly open up new
genres of art while reducing some opportunities for some existing digital artists.
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A Prompt-to-prompt Analysis

The base content captions partially generated using ChatGPT for the prompt-to-prompt analysis experiments are:

1. A squirrel eating a burger

2. A hamster on a skateboard

3. A toy next to a flower

4. A car driving down the road

5. A giraffe in a chair

6. A bear wearing sunglasses

7. An octopus in a space suit

8. A hedgehog getting a haircut

9. A sloth running a marathon

10. A cat posing like napoleon

11. A dog with a beard, smoking a cigar

12. A bee flying underwater next to fish

13. A fish with a hat, playing a guitar

14. A bird with a bowtie, playing a saxophone

15. A turtle with a top hat, playing a piano

16. A frog with a cowboy hat, playing a banjo

17. A mouse with a sombrero, playing a trumpet

18. A snake with a beret, playing a violin

19. A rabbit with a fedora, playing a cello

20. A squirrel with a baseball cap, playing a drum

The style modifiers are:

1. A van gogh painting of

2. A graphite sketch of

3. A neon colourful pastel of

4. A minimal flat vector art illustration of

5. A watercolour painting of

6. A psychedelic inverted painting of

7. A pop-art comic book panel of

8. A neoclassical painting of

9. A cubist abstract painting of

10. A surreal dark horror painting of

We visualize results from the preliminary prompt-to-prompt analysis experiments, in Fig 8. The figure shows the
first content prompt for the base content, with the subsequent rows interpolating towards style-modified prompts
using style prompt modifiers 1, 4, 2, and 8. Although not directly relevant to our study, it was also interesting to
note that the stylization strength could be pushed beyond the default strength by pushing the interpolation into
over-drive, similar to the technique presented in NeAT [25].
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Figure 7: The averaged normalized difference in attention values between reference content and 10
stylized content images in the prompt-based prompt-to-prompt model. The higher difference values
(in red) in the later timesteps visualize the effect that earlier timesteps affect coarser structural details,
whereas later timesteps affect lower level textural details.

B Additional details on user studies

We carried out two user studies: an individual rating exercise with defined rating levels, and a 5-way preference
comparative exercise. For each, we executed the experiments once for the content, and once for the style.

Our content-focused rating exercise asks the following question: "A photo has been re-generated with a different
style. Please rate the structure details of the new image, 1 to 5 as follows:", where we next define the expected
judgement criteria for each rating level as follows:

1. The structure is different

2. The structure slightly resembles the photo

3. The structure mostly resembles the photo

4. The structure is the same

5. The structure is the same, including small details

Our style focused rating exercise asks the following question: "A photo has been transformed into the style of
the artwork. Please rate the quality of the style, 1 to 5 as follows:", where the rating definitions are:

1. The style is not recognisable

2. The style is recognisable

3. The colours match

4. The textures match

5. The shapes match

The 5-way comparative study presents the following question for the content-focused experiment: "A photo has
been re-generated with a different style in 5 ways. Please select the highest quality reconstruction of the photo’s
structure details", and the following for the style-focused experiment: "A photo has been re-generated with a
different style in 5 ways. Please select the most similar artistic style to the artwork"

The workers were fairly compensated. We used 5 different workers for each stylized image, for each question.
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Figure 8: Visualization of stylization interpolation using prompt-to-prompt, changing only the
attention V values. The stylization strength displayed represents the interpolation strength between
the content and style attention values.
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Figure 9: Additional deformable style transfer comparisons
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