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Recognizing and Rewarding Creatives

We present EKILA [1]; a decentralized framework that enables creatives to receive recognition and

reward for their contributions to generative AI (GenAI). 

EKILA combines robust visual attribution with a content provenance standard (C2PA) to 

address the problem of synthetic image provenance – determining the generative model and training 

data responsible for an AI-generated image.

EKILA extends non-fungible tokens (NFTs) – a decentralized way to track asset ownership via 

Blockchain (DLT) –  to introduce tokenized rights, enabling a triangular relationship between the 

asset’s Ownership, Rights, and Attribution (ORA). 

ORA enables creators to express training consent and, through our attribution model, to receive 

apportioned credit, including royalties payments for use of their assets in GenAI.

C2PA:  Provenance for Synthetic Media

ORA Triangle: Ownership, Rights, Attribution

EKILA introduces a way to assign rights to NFTs e.g. the right to use an image to train GenAI.  Neither 

NFT nor C2PA contains mechanisms for specifying rights.  We propose a smart contract --- the Rights 

contract -- to define rights and to distribute licenses to those rights, represented by rights tokens. Each 

creator manages a Rights contract, and issues tokenized rights to rightsholders via that contract. 

The relationship between NFT, C2PA metadata in the asset, and Rights contract encodes the 

Ownership, Rights and Attribution (ORA) of the asset, immutably bound in a triangular relationship.

Visual Attribution

Visualization: Visual Attribution and Apportionment 

Evaluation and Conclusion

We evaluate over two diffusion models trained on LAION-400M and on Adobe Stock.   We show in 

both cases our attribution model to significantly outperform ViT-CLIP and recently proposed patch 

driven metrics for measuring attribution [5,6].  Visuals of each model are above, ROC curve below.
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C2PA is an open emerging standard for media provenance [2].  C2PA describes facts about the 

creation provenance of an asset, e.g. who made it, how, and using ingredient assets. These facts 

are called assertions stored in a manifest in the asset. Manifests thus form a provenance graph.

We apply C2PA to describe synthetic image provenance: to describe within an image's manifest the 

GenAI model used to produce it and, within the GenAI model manifest, the ingredients used to train it.
Our approach consists of 3 stages: 1) partial matching based on image fingerprints derived from 

dense multi-scale patches, 2) pairwise verification and scoring of attributed patches, and 3) 

apportionment based on a normalized verification score over verified matches.
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Pair-wise Verification.

We verify the top-k retrieved patches, 

comparing spatial feature maps 

from fingerprinting query patch       and 

be the k result maps. We process each feature

map with a 1×1 convolution and extract 

various GeM-pooled [4] descriptors 

A feature correlation matrix 

passes to an MLP to predict verification score.

Patchified Fingerprinting.

We adapt the fingerprinting approach in [3] to 

attribute patches using a contrastive learning 

objective.

Where     is a set of augmentations applied to 

modelling GenAI appearance variation seen in 

near-memorization cases,     is a large random 

mini-batch and similarity is 
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