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Abstract

Self-supervised learning (SSL) techniques have recently produced outstanding re-
sults in learning visual representations from unlabeled videos. However, despite
the importance of motion in supervised learning techniques for action recognition,
SSL methods often do not explicitly consider motion information in videos. To
address this issue, we propose MOFO (MOtion FOcused), a novel SSL method for
focusing representation learning on the motion area of a video for action recogni-
tion. MOFO automatically detects motion areas in videos and uses these to guide
the self-supervision task. We use a masked autoencoder that randomly masks out
a high proportion of the input sequence and forces a specified percentage of the
inside of the motion area to be masked and the remainder from outside. We further
incorporate motion information into the finetuning step to emphasise motion in the
downstream task. We demonstrate that our motion-focused innovations can signif-
icantly boost the performance of the currently leading SSL method (VideoMAE)
for action recognition. Our proposed approach significantly improves the perfor-
mance of the current SSL method for action recognition, indicating the importance
of explicitly encoding motion in SSL.

1 Introduction

Action recognition is an essential task in video understanding and has been extensively investigated
in recent years Liu et al. [2022], Wei et al. [2022], Girdhar et al. [2022a]. In video action recognition,
supervised deep learning techniques have made significant progress Tran et al. [2015], Feichtenhofer
et al. [2019], Lin et al. [2019]; However, due to the lack of labels, which must be manually collected,
learning to recognise actions from a small number of labelled videos is a difficult task as data collec-
tion will be expensive and challenging. It is especially inappropriate for long-tail open vocabulary
object distributions across scenes, such as a kitchen. Furthermore, getting annotations for videos is
much more difficult due to the large number of frames and the temporal boundaries of when actions
begin and end. Therefore, SSL has gained attention due to the problems above.

Supervised methods Wang and Gupta [2018], Kwon et al. [2020], Patrick et al. [2021] have recog-
nised the importance of motion to understand actions because often, key objects are moving in the
scene. However, most SSL methods do not explicitly consider motion or use hand-crafted features Es-
corcia et al. [2022], limiting their effectiveness. In SSL literature, masked autoencoder models Tong
et al. [2022] have been proposed to learn the underlying data distribution but without directly em-
phasising motion autonomously. Even though this model can perform spatiotemporal reasoning over
content, the encoder backbone is ineffective in capturing motion representations (we show this later
in Fig. 2). Incorporating motion information is not trivial, especially in egocentric videos. Some
previous approaches utilized both RGB frames and optical flows Han et al. [2020], Ni et al. [2022]
to strengthen learning of features but the primary issue lies in the stability of the results, which
can be significantly impacted by camera movement. When the camera moves rapidly, static objects
or background pixels exhibit high movement velocities in optical flow. Several existing methods
leveraged object detection to improve egocentric video recognition Wang et al. [2020,?], Wu et al.
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Figure 1: MOFO is a motion-focused self-supervised framework for action recognition.

[2019], Ma et al. [2016], among which Wu et al. [2019] also incorporate temporal contexts to help
understand the ongoing action. These approaches may have limited uses in real-world systems since
they demand time-consuming, labour-intensive object detection annotations and are computationally
expensive. In contrast, our framework does not depend on costly object detectors.

Fig. 1 overviews our method, with three parts: First, our automatic motion area detection using
optical flow input to create a motion map to remove camera motion. Second, we propose our new
strategy for the SSL pretext task, a reconstruction task focusing more on masking 3D patches on the
motion area in the video called MOFO (Motion Focused). Thirdly, the downstream task adaptation
step emphasises motion further by integrating motion information during the finetuning training. A
key contribution of our work is to detect salient objects and motion in the video based on motion
boundaries from optical flow. Using the motion boundaries instead of a direct optical flow output
mitigates the challenge of camera motion and creates salient areas of movement or interest without
a pretrained network. Given the motion identification, we suggest extending the self-supervised
masking Tong et al. [2022] to include motion understanding. A further contribution is that, during
the finetuning stage, MOFO prioritises the motion areas in video data identified as a self-supervision
pretext task. Since motion areas contain more information, such as moving objects, actions, and
interactions, our proposed model gives them a higher priority by emphasising the masking strategy
to be more in the motion area.

2 Motion-focused Self-supervised Video Understanding

2 .1 Automatic motion area detection

To identify the motion areas without pretrained object detectors, we propose using classical computer
vision features, the optical flow vectors. however, these vectors will be affected by camera motion,
with static objects or background pixels exhibiting high movement velocities in optical flow when the
camera moves rapidly. To mitigate the problem above, we calculate the motion boundaries Dalal et al.
[2006] and use these to define a motion map Li et al. [2021]. Therefore, given a video with T frames
and a H ×W dimension, we first extract the optical flow vectors representing
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pixel-level motion between two consecutive frames in a video using the TV-L1 algorithm Zach et al.
[2007] that offers increased robustness against illumination changes, occlusions, and noise. Then,
given the horizontal and vertical displacements of each pixel between the ith frame and the (i+1)th
frame represented by the flow maps ui, vi ∈ RH×W , any kind of local differential or flow difference
cancels out most of the effects of the camera rotation. The resulting motion map is defined as:
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where every component denotes the corresponding x- and y-derivative differential flow frames con-
tributing towards computing mi, representing moving velocity in the i-th frame while ignoring the
camera motion. As a result, mi ∈ RH×W is less influenced by camera motion and considers the
moving salients in the i-th frame. A low-pass Gaussian filter is used to smooth areas of the image
with high-frequency components to further reduce the unwanted noise effect. The Gaussian Smooth-
ing Operator computes an average of the surrounding pixels weighted according to the Gaussian
distribution (G).

After noise reduction, the next step is to find the boundaries of the motion. To do so, we create
contours Suzuki et al. [1985], which are short curves that connect points of the same hue or intensity.
We select the two most significant contours in each frame to create a mask that indicates the motion
area in a frame of a specific video. The main reason for choosing two contours is that in our datasets,
an action is defined by hands and the corresponding object. We create a bounding box around the
resulting area that precisely represents the motion in each video. In Fig. ??(a), we qualitatively
compare our automatic box predictions and the provided supervised annotation for Epic-Kitchens-
100 for several sample frames and provide further examples in the Appendix in Fig ??.

2 .2 Motion-focused self-supervised learning

MOFO uses 3D tube volume embeddings for the self-supervised pretext stage to obtain 3D video
patches from frames as inputs. It encodes these with a vanilla ViT Dosovitskiy et al. [2020] with
joint space-time attention as a backbone. We segmented each video into N non-overlapping tubes
pi ∈ RHt×Wt×Tt . Then, we use a high-ratio tube masking approach to perform masked autoencoder
(MAE) pretraining with an asymmetric transformer-based encoder-decoder architecture reconstruc-
tion task. Unlike other random masking methods, we explicitly integrate the motion information
computed in subsection 2 .1 into our masking strategy, resulting in a motion-guided approach to
encoding motion for our MAE. Once the motion area is detected, our novel tube masking strategy
enforces a mask to be applied on a high portion of the tubes inside the motion area. In other words, a
fixed percentage of the tubes (generally 75%) inside the motion area is always randomly masked to
ensure the model is attending more to the motion area at reconstruction time. Therefore, we apply an
extremely high masking ratio at random (90%) while always masking a fixed percentage of the tubes
(75%) inside the motion area. The encoder produces a latent feature representation of the video using
input frames with blacked-out regions. The decoder uses the latent feature representation from the
encoder. It estimates the missing region using the mean squared error (MSE) loss, computed in pixel
space between the masked patches and trained reconstructed outputs. Our design encourages the
network to capture more useful spatiotemporal structures, making MOFO a more meaningful task
and improving the performance of self-supervised pretraining. All models only use the unlabelled
data in the training set of each dataset for pertaining.

2 .3 Motion-focused finetuning

Recall that the self-supervised learning protocol is split between a pretraining and finetuning stage.
We propose a new approach to focus on the motion area at both the pretext and the finetuning of
the model. The model is trained end-to-end during finetuning, using the weights of the pretrained
network as initialisation for the downstream supervised task dataset.

As the area inside the motion box has more semantic motion information, we wish to exploit this
information for our task by leveraging the detected motion box. On the other hand, the video’s
setting and any nearby items could provide context for categorising the video clips for the action
recognition task. For instance, in the case of washing dishes, the hands can be seen in the sink, but
the dishes beside the sink may indicate that the person is washing them. Therefore, we propose to use
multi-cross attention (MCA) Nagrani et al. [2021] in our encoder. MCA is an attention mechanism
that mixes two different embedding sequences; the two are from the same modality. Unlike self-
attention, where inputs are the same set, during cross-attention, they differ; MCA’s main objective
is to determine attention scores using data from various information sources. This module resides
between the encoder and MLP classifier layers, takes the inner and outer motion box embeddings,
and outputs the fused embedding (see details in Appendix ??).

3 Experiments

We use two well-known and large datasets to evaluate our proposed approach: Something-
Something V2 (SSV2) Goyal et al. [2017] and Epic-Kitchens-100 Damen et al. [2022]. Using
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Table 1: Human activity recognition on Epic-Kitchens and Something-Something V2 (SSV2) in
terms of Top-1 and Top-5 accuracy.

Method Backbone Param
SSV2 Epic-Kitchens
Action Verb Noun Action

Top-1 Top-5 Top-1 Top-1 Top-1

VIMPAC Tan et al. [2021] ViT-L 307 68.1 - - - -
BEVT Wang et al. [2022] Swin-B 88 70.6 - - - -

VideoMAE Tong et al. [2022] ViT-B 87 70.8 92.4 71.6 66.0 53.2
ST-MAE Feichtenhofer et al. [2022] ViT-L 304 72.1 - - - -

OmniMAE Girdhar et al. [2022a] ViT-B 87 69.5 - - - 39.3
Omnivore(Swin-B) Girdhar et al. [2022b] ViT-B - 71.4 93.5 69.5 61.7 49.9

MOFO (Proposed) ViT-B 102 75.5 95.3 74.2 68.1 54.5

egocentric videos to predict first-person activity faces many challenges, including a limited field of
view, occlusions, and unstable motions, and there is a relative scarcity of labelled data.

Results and analysis We finetune the learned model for action classification based on our proposed
MOFO finetuning approach to evaluate the pretrained model and train on a new downstream task
with the learned representation. The entire feature encoder and a linear layer are finetuned end-to-end
with cross-entropy loss, with recognition accuracy reported in Table 1. We demonstrate significant
performance improvement over the other self-supervised approaches, increasing 2.6%, 2.1%, and
1.3% accuracy over the best-performing methods on Epic-Kitchens verb, noun, and action classifica-
tion and 4.7% on Something Something V2 action classification, respectively. In terms of masking
ratio, variants are presented in the Appendix, but we found that the 75% inside masking ratio worked
the best. Our strategy outperforms approaches like OmniMAE Girdhar et al. [2022a], trained jointly
on images and videos by 3.2% in Top-1 accuracy. On Something Something V2, our method outper-
forms VIMPAC Tan et al. [2021] and ST-MAE Feichtenhofer et al. [2022], which both use ViT-Large
as a backbone, whereas our backbone is vanilla ViT-Base with over 3x fewer parameters. Compared
to VideoMAE Tong et al. [2022], our approach achieves significantly better results while the number
of backbone parameters remains the same.

Figure 2: Visualisation of the learned features

Visualizing self-supervised representation To
further understand the representations learned by
MOFO, we utilise GradCAM Selvaraju et al.
[2017] to create a saliency map highlighting each
pixel’s importance to show how each pixel con-
tributes to the discrimination of the video clip.
Fig. 2 visualises the middle frame of a video clip,
the motion map of the VideoMAE and our MOFO
from the fifth attention layer of the ViT-Base back-
bone. It is interesting to note that for similar ac-
tions: knead dough, cut carrot, and cut-in tomato,
MOFO is sensitive to the location that is the most
significant motion location as detected by our au-
tomatic algorithm.

4 Conclusion

MOFO introduces a Motion-Focused technique
which explores motion information for enhancing motion-aware self-supervised video action recog-
nition. We propose an innovative strategy, an effective self-supervised pretext task, and a modification
to masked autoencoding, which focuses masking on the motion area in the video (Motion Focused).
Extensive experiments on two challenging datasets demonstrate that this context-based SSL tech-
nique improves performance in action recognition tasks, and the public code will guide many research
directions.

Acknowledgement The work was partially funded by a Leverhulme Trust Research Project Grant:
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