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Abstract

Self-supervised learning (SSL) techniques have recently produced outstanding re-1

sults in learning visual representations from unlabeled videos. However, despite2

the importance of motion in supervised learning techniques for action recognition,3

SSL methods often do not explicitly consider motion information in videos. To4

address this issue, we propose MOFO (MOtion FOcused), a novel SSL method for5

focusing representation learning on the motion area of a video for action recogni-6

tion. MOFO automatically detects motion areas in videos and uses these to guide7

the self-supervision task. We use a masked autoencoder that randomly masks out8

a high proportion of the input sequence and forces a specified percentage of the9

inside of the motion area to be masked and the remainder from outside. We fur-10

ther incorporate motion information into the finetuning step to emphasise motion11

in the downstream task. We demonstrate that our motion-focused innovations can12

significantly boost the performance of the currently leading SSL method (Vidoe-13

MAE) for action recognition. Our proposed approach significantly improves the14

performance of the current SSL method for action recognition, indicating the im-15

portance of explicitly encoding motion in SSL.16

1 Introduction17

Action recognition is an essential task in video understanding and has been extensively investigated18

in recent years Liu et al. [2022], Wei et al. [2022], Girdhar et al. [2022a]. In video action recognition,19

supervised deep learning techniques have made significant progress Tran et al. [2015], Feichtenhofer20

et al. [2019], Lin et al. [2019]; However, due to the lack of labels, which must be manually collected,21

learning to recognise actions from a small number of labelled videos is a difficult task as data collec-22

tion will be expensive and challenging. It is especially inappropriate for long-tail open vocabulary23

object distributions across scenes, such as a kitchen. Furthermore, getting annotations for videos is24

much more difficult due to the large number of frames and the temporal boundaries of when actions25

begin and end.26

Supervised methods Wang and Gupta [2018], Kwon et al. [2020], Patrick et al. [2021] have recog-27

nised the importance of motion to understand actions because often, key objects are moving in28

the scene. However, most SSL methods do not explicitly consider motion or use hand-crafted fea-29

tures Escorcia et al. [2022], limiting their effectiveness. In SSL literature, masked autoencoder30

models Tong et al. [2022] have been proposed to learn the underlying data distribution but without31

directly emphasising motion autonomously. Even though this model can perform spatiotemporal32

reasoning over content, the encoder backbone is ineffective in capturing motion representations (we33

show this later in Fig. 2). Incorporating motion information is not trivial. especially in egocentric34

video. The primary issue lies in the stability of the results, which can be significantly impacted35

by camera movement. When the camera moves rapidly, static objects or background pixels exhibit36

high movement velocities in optical flow. Several existing methods leveraged object detection to im-37

prove egocentric video recognition Wang et al. [2020b,b], Wu et al. [2019], Ma et al. [2016], among38

which Wu et al. [2019] also incorporate temporal contexts to help understand the ongoing action.39

NeurIPS 2023 Workshop: Self-Supervised Learning-Theory and Practice



Figure 1: MOFO is a motion-focused self-supervised framework for action recognition.

These approaches may have limited uses in real-world systems since they demand time-consuming,40

labour-intensive item detection annotations and are computationally expensive. In contrast, our41

framework does not depend on costly object detectors.42

Fig. 1 overviews our method, with three parts; first, our automatic motion area detection, With op-43

tical flow input to create a motion map to remove camera motion. Second, we propose our new44

strategy for the SSL pretext task, a reconstruction task focusing more on masking 3D patches on the45

motion area in the video called MOFO (Motion Focused). Thirdly, the downstream task adaptation46

step emphasises motion further by integrating motion information during the finetuning training. A47

key contribution of our work is to detect salient objects and motion in the video based on motion48

boundaries from optical flow. Using the motion boundaries instead of a direct optical flow output49

mitigates the challenge of camera motion and creates salient areas of movement or interest without50

a pretrained network. Given the identification of motion, we propose to provide a motion under-51

standing of self-supervised masking Tong et al. [2022] of 3D patches in the video frames. A further52

contribution is that, during the finetuning stage, MOFO prioritises the motion areas in video data53

identified as a self-supervision pretext task. Since motion areas contain more information, such54

as moving objects, actions, and interactions, our proposed model gives them a higher priority by55

emphasising the masking strategy to be more in the motion area.56

2 Motion-focused Self-supervised Video Understanding57

2 .1 Automatic Motion Area Detection58

To identify the motion areas without pretrained object detectors, we propose using classical com-59

puter vision features, Optical flow vectors; however, these vectors will be affected by camera mo-60

tion, with static objects or background pixels exhibiting high movement velocities in optical flow61

when the camera moves rapidly. To mitigate the problem above, we calculate the motion bound-62

aries Dalal et al. [2006] and use these to define a motion map Li et al. [2021]. Therefore, given a63

video with T frames and a H ×W dimension, we first extract the optical flow vectors representing64 {
fi ∈ RH×W

}T

i=1
pixel-level motion between two consecutive frames in a video using the TV-L165

algorithm Zach et al. [2007] that offers increased robustness against illumination changes, occlu-66

sions and noise. Then, given the horizontal and vertical displacements of each pixel between the67

ith frame and the (i + 1)th frame represented by the flow maps ui, vi ∈ RH×W , any kind of local68

differential or flow difference cancels out most of the effects of the camera rotation. The resulting69

motion map is defined as:70

mi =

√
(
∂ui

∂x
)2 + (

∂ui

∂y
)2 + (

∂vi
∂x

)2 + (
∂vi
∂y

)2 (1)

2



where every component denotes the corresponding x- and y-derivative differential flow frames con-71

tributing towards computing mi, representing moving velocity in the i-th frame while ignoring the72

camera motion. As a result, mi ∈ RH×W is less influenced by camera motion and considers the73

moving salients in the i-th frame. A low-pass Gaussian filter is used to smooth areas of the image74

with high-frequency components to further reduce the unwanted noise effect. The Gaussian Smooth-75

ing Operator computes an average of the surrounding pixels weighted according to the Gaussian76

distribution (G).77

After noise reduction, the next step is to find the boundaries of the motion. To do so, we create78

contours Suzuki et al. [1985], which are short curves that connect points of the same hue or intensity.79

We select the two most significant contours in each frame to create a mask that indicates the motion80

area in a frame of a specific video. The main reason for choosing two contours is that in our datasets,81

an action is defined by hands and the corresponding object. We create a bounding box around82

the resulting area that precisely represents the motion in each video. In Fig. 7(a), we qualitatively83

compare our automatic box predictions and the provided supervised annotation for Epic-Kitchens-84

100 for several sample frames and provide further examples in the Appendix.85

2 .2 Motion-focused Self-Supervised Learning86

MOFO uses 3D tube volume embeddings for the self-supervised pretext stage to obtain 3D video87

patches from frames as inputs. It encodes these with a vanilla ViT Dosovitskiy et al. [2020] with88

joint space-time attention as a backbone. We segmented each video into N non-overlapping tubes89

pi ∈ RHt×Wt×Tt . Then, we use a high-ratio tube masking approach to perform masked autoencoder90

(MAE) pretraining with an asymmetric transformer-based encoder-decoder architecture reconstruc-91

tion task. Unlike other random masking methods, we explicitly integrate the motion information92

computed in subsection 2 .1 into our masking strategy, resulting in a motion-guided approach to93

encode motion for our MAE. Our novel tube masking strategy enforces a mask to be allied on a94

high portion of the tubes inside the motion area. In other words, a fixed percentage of the tubes95

(generally 75%) inside the motion area is always randomly masked to ensure the model is attend-96

ing more to the motion area at reconstruction time. Therefore, we apply an extremely high ratio97

masking at random (90%) while always masking a fixed percentage of the tubes (75%) inside the98

motion area. The encoder produces a latent feature representation of the video using input frames99

with blacked-out regions. The decoder uses the latent feature representation from the encoder. It100

estimates the missing region using the mean squared error (MSE) loss, computed in pixel space be-101

tween the masked patches and trained reconstructed outputs. Our design encourages the network to102

capture more useful spatiotemporal structures, making MOFO a more meaningful task and improv-103

ing the performance of self-supervised pretraining. All models only use the unlabelled data in the104

training set of each dataset for pertaining.105

2 .3 Motion-focused Finetuning106

Recall that the self-supervised learning protocol is split between a pretraining and finetuning stage.107

We propose a new approach to focus on the motion area at both the pretext and the finetuning of108

the model. The model is trained end-to-end during finetuning, using the weights of the pretrained109

network as initialisation for the downstream supervised task dataset.110

As the area inside the motion box has more semantic motion information, we wish to exploit this111

information for our task by leveraging the detected motion box. On the other hand, the video’s112

setting and any nearby items could provide context for categorising the video clips for the action113

recognition task. For instance, in the case of washing dishes, the hands can be seen in the sink, but114

the dishes beside the sink may indicate that the person is washing them. Therefore, we propose to use115

multi-cross attention (MCA) Nagrani et al. [2021] in our encoder. MCA is an attention mechanism116

that mixes two different embedding sequences; the two are from the same modality. Unlike self-117

attention, where inputs are the same set, during cross-attention, they differ; MCA’s main objective118

is to determine attention scores using data from various information sources. This module resides119

between the encoder and MLP classifier layers, takes the inner and outer motion box embeddings,120

and outputs the fused embedding (see details in Appendix B ).121

3 Experiments122

We use two well-known and large datasets to evaluate our proposed approach: Something-123

Something V2 (SSV2) Goyal et al. [2017] and Epic-Kitchens-100 Damen et al. [2022]. Using124
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Table 1: Human activity recognition on Epic-Kitchens and Something-Something V2 (SSV2) in
terms of Top-1 and Top-5 accuracy.

Method Backbone Param
SSV2 Epic-Kitchens
Action Verb Noun Action

Top-1 Top-5 Top-1 Top-1 Top-1

VIMPAC Tan et al. [2021] ViT-L 307 68.1 - - - -
BEVT Wang et al. [2022] Swin-B 88 70.6 - - - -

VideoMAE Tong et al. [2022] ViT-B 87 70.8 92.4 71.6 66.0 53.2
ST-MAE Feichtenhofer et al. [2022] ViT-L 304 72.1 - - - -

OmniMAE Girdhar et al. [2022a] ViT-B 87 69.5 - - - 39.3
Omnivore(Swin-B) Girdhar et al. [2022b] ViT-B - 71.4 93.5 69.5 61.7 49.9

MOFO (Proposed) ViT-B 102 75.5 95.3 74.2 68.1 54.5

egocentric videos to predict first-person activity faces many challenges, including a limited field of125

view, occlusions, and unstable motions, and there is a relative scarcity of labelled data.126

Results and analysis We finetune the learnt model for action classification based on our proposed127

MOFO finetuning approach to evaluate the learned model as a pretrained model and train on a new128

downstream task with the learned representation. The entire feature encoder and a linear layer are129

finetuned end-to-end with cross-entropy loss, with recognition accuracy reported in Table 3. We130

demonstrate significant performance improvement over the other self-supervised approaches, in-131

creasing 2.6%, 2.1%, and 1.3% accuracy over the best-performing methods on Epic-Kitchens verb,132

noun and action classification and 4.7% on Something Something V2 action classification, respec-133

tively. In terms of masking ratio, variants are presented in the Appendix, but we found that the 75%134

inside masking ratio worked the best. Our strategy outperforms approaches like OmniMAE Gird-135

har et al. [2022a], trained jointly on images and videos by 3.2% in Top-1 accuracy. On Something136

Something V2, our method outperforms VIMPAC Tan et al. [2021] and ST-MAE Feichtenhofer137

et al. [2022], which both use ViT-Large as a backbone, whereas our backbone is vanilla ViT-Base138

with over 3x fewer parameters. Compared to VideoMAE Tong et al. [2022], our approach achieves139

significantly better results while the number of backbone parameters remains the same.140

Figure 2: Visualisation of the learnt features

Visualizing self-supervised representation141

To further understand the representations learnt142

by MOFO, we utilise GradCAM Selvaraju et al.143

[2017] to create a saliency map highlighting144

each pixel’s importance to show how each pixel145

contributes to the discrimination of the video146

clip. Fig. 2 visualises the middle frame of a147

video clip, the motion map of the VideoMAE148

and our MOFO from the fifth attention layer of149

the ViT-Base backbone. It is interesting to note150

that for similar actions: knead dough, cut car-151

rot, and cut-in tomato, MOFO is sensitive to the152

location that is the most significant motion loca-153

tion as detected by our automatic algorithm.154

4 Conclusion155

MOFO introduces a Motion-Focused technique,156

which explores the motion information for enhancing motion-aware self-supervised video action157

recognition. We propose an innovative strategy, an effective self-supervised pretext task, and a mod-158

ification to masked autoencoding, which focuses masking on the motion area in the video (Motion159

Focused). Extensive experiments on two challenging datasets demonstrate that this context-based160

SSL technique improves performance in action recognition tasks, and the public code will guide161

many research directions.162
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Vivit: A video vision transformer. In ICCV, 2021.167

Federico Baldassarre and Hossein Azizpour. Towards self-supervised learning of global and object-168

centric representations. arXiv preprint arXiv:2203.05997, 2022.169

Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video170

understanding? In ICML, 2021.171

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and172

Armand Joulin. Emerging properties in self-supervised vision transformers. In ICCV, 2021.173

Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics174

dataset. In CVPR, 2017.175

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E. Hinton. Big176

self-supervised models are strong semi-supervised learners. In NeurIPS, 2020.177

Yabo Chen, Yuchen Liu, Dongsheng Jiang, Xiaopeng Zhang, Wenrui Dai, Hongkai Xiong, and178

Qi Tian. Sdae: Self-distillated masked autoencoder. In ECCV, 2022.179

Subhabrata Choudhury, Laurynas Karazija, Iro Laina, Andrea Vedaldi, and Christian Rupprecht.180

Guess what moves: Unsupervised video and image segmentation by anticipating motion. BMVC,181

2022.182

Navneet Dalal, Bill Triggs, and Cordelia Schmid. Human detection using oriented histograms of183

flow and appearance. In ECCV, 2006.184

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos185

Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Scaling egocentric186

vision: The epic-kitchens dataset. In ECCV, 2018.187

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos188

Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. The epic-kitchens189

dataset: Collection, challenges and baselines. IEEE Transactions on Pattern Analysis and Ma-190

chine Intelligence, 2020a.191

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Antonino Furnari, Evangelos Kazakos,192

Jian Ma, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Rescaling egocentric193

vision. arXiv preprint arXiv:2006.13256, 2020b.194

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Antonino Furnari, Evangelos Kazakos,195

Jian Ma, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Rescaling egocentric196

vision: Collection, pipeline and challenges for epic-kitchens-100. IJCV, 2022.197

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep198

bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.199

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep200

bidirectional transformers for language understanding. In NAACL, pages 4171–4186, 2019.201

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by202

context prediction. In ICCV, pages 1422–1430, 2015.203

Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venu-204

gopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks for visual205

recognition and description. In CVPR, 2015.206

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas207

Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An208

image is worth 16x16 words: Transformers for image recognition at scale. ICLR, 2020.209

Victor Escorcia, Ricardo Guerrero, Xiatian Zhu, and Brais Martinez. Sos! self-supervised learning210

over sets of handled objects in egocentric action recognition. In ECCV, 2022.211

5



Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and212

Christoph Feichtenhofer. Multiscale vision transformers. In ICCV, 2021.213

Christoph Feichtenhofer, Axel Pinz, and Richard P Wildes. Spatiotemporal multiplier networks for214

video action recognition. In CVPR, 2017.215

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video216

recognition. In ICCV, 2019.217

Christoph Feichtenhofer, haoqi fan, Yanghao Li, and Kaiming He. Masked autoencoders as spa-218

tiotemporal learners. In NeurIPS, 2022.219

Basura Fernando, Hakan Bilen, Efstratios Gavves, and Stephen Gould. Self-supervised video repre-220

sentation learning with odd-one-out networks. In CVPR, 2017.221

David J. Fleet and Allan D. Jepson. Stability of phase information. IEEE TPAMI, 1993.222

Valentin Gabeur, Chen Sun, Karteek Alahari, and Cordelia Schmid. Multi-modal transformer for223

video retrieval. In ECCV, 2020.224

Rohit Girdhar, Alaaeldin El-Nouby, Mannat Singh, Kalyan Vasudev Alwala, Armand Joulin, and225

Ishan Misra. Omnimae: Single model masked pretraining on images and videos. arXiv preprint226

arXiv:2206.08356, 2022a.227

Rohit Girdhar, Mannat Singh, Nikhila Ravi, Laurens van der Maaten, Armand Joulin, and Ishan228

Misra. Omnivore: A single model for many visual modalities. In CVPR, 2022b.229

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne West-230

phal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al.231

The" something something" video database for learning and evaluating visual common sense. In232

ICCV, 2017.233

Sheng Guo, Zihua Xiong, Yujie Zhong, Limin Wang, Xiaobo Guo, Bing Han, and Weilin Huang.234

Cross-architecture self-supervised video representation learning. In CVPR, 2022.235

Agrim Gupta, Stephen Tian, Yunzhi Zhang, Jiajun Wu, Roberto Martín-Martín, and Li Fei-Fei.236

Maskvit: Masked visual pre-training for video prediction. arXiv preprint arXiv:2206.11894,237

2022.238

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked239

autoencoders are scalable vision learners. In CVPR, 2022.240

Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and Li Fei-241

Fei. Large-scale video classification with convolutional neural networks. In CVPR, 2014.242

Muhammad Attique Khan, Kashif Javed, Sajid Ali Khan, Tanzila Saba, Usman Habib, Junaid Ali243

Khan, and Aaqif Afzaal Abbasi. Human action recognition using fusion of multiview and deep244

features: an application to video surveillance. Multimedia tools and applications, 2020.245

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and246

Mubarak Shah. Transformers in vision: A survey. ACM computing surveys (CSUR), 2022.247

Heeseung Kwon, Manjin Kim, Suha Kwak, and Minsu Cho. Motionsqueeze: Neural motion feature248

learning for video understanding. In ECCV, 2020.249

Conglong Li, Zhewei Yao, Xiaoxia Wu, Minjia Zhang, and Yuxiong He. Deepspeed data efficiency:250

Improving deep learning model quality and training efficiency via efficient data sampling and251

routing. arXiv preprint arXiv:2212.03597, 2022a.252

Gang Li, Heliang Zheng, Daqing Liu, Chaoyue Wang, Bing Su, and Changwen Zheng. Semmae:253

Semantic-guided masking for learning masked autoencoders. NeurIPS, 2022b.254

Haofeng Li, Guanqi Chen, Guanbin Li, and Yizhou Yu. Motion guided attention for video salient255

object detection. In ICCV, 2019.256

6



Rui Li, Yiheng Zhang, Zhaofan Qiu, Ting Yao, Dong Liu, and Tao Mei. Motion-focused contrastive257

learning of video representations. In ICCV, 2021.258

Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra Malik, and259

Christoph Feichtenhofer. Mvitv2: Improved multiscale vision transformers for classification and260

detection. In CVPR, 2022c.261

Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift module for efficient video understanding.262

In ICCV, 2019.263

Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin264

transformer. In CVPR, June 2022.265

Jonathon Luiten, Idil Esen Zulfikar, and Bastian Leibe. Unovost: Unsupervised offline video object266

segmentation and tracking. In WACV, 2020.267

Minghuang Ma, Haoqi Fan, and Kris M Kitani. Going deeper into first-person activity recognition.268

In CVPR, 2016.269

Joanna Materzynska, Tete Xiao, Roei Herzig, Huijuan Xu, Xiaolong Wang, and Trevor Darrell.270

Something-else: Compositional action recognition with spatial-temporal interaction networks. In271

CVPR, 2020.272

Arsha Nagrani, Shan Yang, Anurag Arnab, Aren Jansen, Cordelia Schmid, and Chen Sun. Attention273

bottlenecks for multimodal fusion. NeurIPS, 2021.274

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw275

puzzles. In ECCV, 2016.276

Adrián Núñez-Marcos, Gorka Azkune, and Ignacio Arganda-Carreras. Egocentric vision-based277

action recognition: A survey. Neurocomputing, 2022.278

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context279

encoders: Feature learning by inpainting. In CVPR, 2016.280

Mandela Patrick, Dylan Campbell, Yuki Asano, Ishan Misra, Florian Metze, Christoph Feichten-281

hofer, Andrea Vedaldi, and Joao F Henriques. Keeping your eye on the ball: Trajectory attention282

in video transformers. NeurIPS, 2021.283

Tomas Pfister, James Charles, and Andrew Zisserman. Flowing convnets for human pose estimation284

in videos. In Proceedings of the IEEE international conference on computer vision, 2015.285

Sudeep Sarkar, P Jonathon Phillips, Zongyi Liu, Isidro Robledo Vega, Patrick Grother, and Kevin W286

Bowyer. The humanid gait challenge problem: Data sets, performance, and analysis. IEEE287

transactions on pattern analysis and machine intelligence, 2005.288

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,289

and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-290

ization. In ICCV, 2017.291

Ufuk Umut Senturk, Arif Akar, and Nazli Ikizler-Cinbis. Triplednet: Exploring depth estimation292

with self-supervised representation learning. 2022.293

A H. Shabani, J S. Zelek, and D A. Clausi. Robust local video event detection for action recognition.294

In NeurIPS, Machine Learning for Assistive Technology Workshop, 2010.295

Amir Hossein Shabani, David A Clausi, and John S Zelek. Improved spatio-temporal salient feature296

detection for action recognition. In BMVC, 2011.297

Dandan Shan, Jiaqi Geng, Michelle Shu, and David F Fouhey. Understanding human hands in298

contact at internet scale. In CVPR, 2020.299

Hedvig Sidenbladh, Michael J Black, and David J Fleet. Stochastic tracking of 3d human figures300

using 2d image motion. In ECCV, 2000.301

7



Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action recognition302

in videos. NeurIPS, 2014.303

S Sowmyayani and P Arockia Jansi Rani. Stharnet: Spatio-temporal human action recognition304

network in content based video retrieval. Multimedia Tools and Applications, 2022.305

Satoshi Suzuki et al. Topological structural analysis of digitized binary images by border following.306

Computer vision, graphics, and image processing, 1985.307

Hao Tan, Jie Lei, Thomas Wolf, and Mohit Bansal. Vimpac: Video pre-training via masked token308

prediction and contrastive learning. arXiv preprint arXiv:2106.11250, 2021.309

Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are data-310

efficient learners for self-supervised video pre-training. NeurIPS, 2022.311

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spa-312

tiotemporal features with 3d convolutional networks. In ICCV, 2015.313

Gül Varol, Ivan Laptev, and Cordelia Schmid. Long-term temporal convolutions for action recogni-314

tion. TPAMI, 2017.315

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,316

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.317

Namrata Vaswani, Amit K Roy-Chowdhury, and Rama Chellappa. " shape activity": a continuous-318

state hmm for moving/deforming shapes with application to abnormal activity detection. IEEE319

Transactions on Image Processing, 2005.320

Paul Viola, Michael J Jones, and Daniel Snow. Detecting pedestrians using patterns of motion and321

appearance. IJCV, 2005.322

Jiangliu Wang, Jianbo Jiao, Linchao Bao, Shengfeng He, Yunhui Liu, and Wei Liu. Self-supervised323

spatio-temporal representation learning for videos by predicting motion and appearance statistics.324

In CVPR, 2019.325

Jiangliu Wang, Jianbo Jiao, and Yun-Hui Liu. Self-supervised video representation learning by pace326

prediction. In ECCV, 2020a.327

Lei Wang and Piotr Koniusz. Self-supervising action recognition by statistical moment and subspace328

descriptors. In ACMMM, 2021.329

Limin Wang, Zhan Tong, Bin Ji, and Gangshan Wu. Tdn: Temporal difference networks for efficient330

action recognition. In CVPR, 2021.331

Rui Wang, Dongdong Chen, Zuxuan Wu, Yinpeng Chen, Xiyang Dai, Mengchen Liu, Yu-Gang332

Jiang, Luowei Zhou, and Lu Yuan. Bevt: Bert pretraining of video transformers. In CVPR, 2022.333

Xiaohan Wang, Yu Wu, Linchao Zhu, and Yi Yang. Symbiotic attention with privileged information334

for egocentric action recognition. In AAAI, 2020b.335

Xiaolong Wang and Abhinav Gupta. Videos as space-time region graphs. In ECCV, 2018.336

Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, and Christoph Feichtenhofer.337

Masked feature prediction for self-supervised visual pre-training. In CVPR, 2022.338

Chao-Yuan Wu, Christoph Feichtenhofer, Haoqi Fan, Kaiming He, Philipp Krahenbuhl, and Ross339

Girshick. Long-term feature banks for detailed video understanding. In CVPR, 2019.340

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student341

improves imagenet classification. In CVPR, 2020.342

Xuehan Xiong, Anurag Arnab, Arsha Nagrani, and Cordelia Schmid. M&m mix: A multimodal343

multiview transformer ensemble. arXiv preprint arXiv:2206.09852, 2022.344

Yuwen Xiong, Mengye Ren, Wenyuan Zeng, and Raquel Urtasun. Self-supervised representation345

learning from flow equivariance. In ICCV, 2021.346

8



Dejing Xu, Jun Xiao, Zhou Zhao, Jian Shao, Di Xie, and Yueting Zhuang. Self-supervised spa-347

tiotemporal learning via video clip order prediction. In CVPR, 2019.348

Shen Yan, Xuehan Xiong, Anurag Arnab, Zhichao Lu, Mi Zhang, Chen Sun, and Cordelia Schmid.349

Multiview transformers for video recognition. In CVPR, 2022.350

Charig Yang, Hala Lamdouar, Erika Lu, Andrew Zisserman, and Weidi Xie. Self-supervised video351

object segmentation by motion grouping. In ICCV, 2021.352

Xitong Yang, Xiaodong Yang, Sifei Liu, Deqing Sun, Larry Davis, and Jan Kautz. Hierarchical353

contrastive motion learning for video action recognition. arXiv preprint arXiv:2007.10321, 2020.354

Sukmin Yun, Hankook Lee, Jaehyung Kim, and Jinwoo Shin. Patch-level representation learning355

for self-supervised vision transformers. In CVPR, 2022.356

Christopher Zach, Thomas Pock, and Horst Bischof. A duality based approach for realtime tv-l 1357

optical flow. In Pattern Recognition: 29th DAGM Symposium, Heidelberg, Germany, September358

12-14, 2007. Proceedings 29, 2007.359

Can Zhang, Yuexian Zou, Guang Chen, and Lei Gan. Pan: Persistent appearance network with an360

efficient motion cue for fast action recognition. In ACMMM, 2019.361

Chuhan Zhang, Ankush Gupta, and Andrew Zisserman. Is an object-centric video representation362

beneficial for transfer? In ACCV, 2022.363

Hao Zhang, Yanbin Hao, and Chong-Wah Ngo. Token shift transformer for video classification. In364

ACMMM, 2021.365

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In ECCV, 2016.366

Appendix367

We also conducted various ablation studies to examine the design choices made in our proposed368

strategy.369

A Motion-focused Self-supervised Learning370

Experimental setting. MOFO uses ViT-Base as a decoder/encoder backbone, trained for 800371

epochs on Something-Something V2 and Epic-Kitchens for the SSL independently. We follow the372

training and experiential parameters from recent work Tong et al. [2022] to ensure a fair comparison373

and finetune for 100 epochs with early stopping. The model takes 16 frames from the video with374

224 × 224 size and divides the input video into a 3D 16 × 16 × 8 patch embeddings, resulting in375

H = 224, W = 224, T = 16, Ht = 16, Wt = 16, Tt = 8, and N = 392. While we have a fixed376

number of input patches for our model, we do not have a fixed number of inner Ninner and outer377

Nouter embeddings due to varying size of the motion area in each video clip. We report Top-1 accu-378

racy on Epic-Kitchens and Top-1 and Top-5 accuracy on Something-Something V2 on downstream379

tasks and use Pytorch and DeepSpeed Li et al. [2022a] on 4xNVIDIA Quadro RTX-5000 GPU for380

our experiments.381

Masking ratio. VideoMAE Tong et al. [2022] recommended tube masking with an extremely382

high ratio which helps reduce information leakage during masked modelling. They demonstrated383

the best efficiency and efficacy with a masking ratio of 90%. Therefore, we explore the effect of384

the inside masking ratio for verb classification on Epic-Kitchens in Fig. 3. It shows that the model385

pretrained with a masking ratio of 90% as the general masking ratio for a video and a high ratio for386

inside masking ratio (75%) achieves the highest efficiency level. Thus, we continue experimenting387

with the rest by fixing the inside mask ratio to 75%.388
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Figure 3: The effect of inside masking ratio on Epic-Kitchens-100 dataset for verb classification
demonstrates that a high inside masking ratio (75%) delivers the best efficiency and effectiveness
trade-off.

Reconstructed frames This section shows several reconstructed image frames from a video in389

Fig. 4 and Fig. 5. We use an asymmetric encoder-decoder architecture to accomplish video self-390

supervised pretraining tube masking with a high ratio for MAE pretraining. We can reconstruct the391

masked patches using random tube masking by finding the spatially and temporally corresponding392

unmasked patches in the adjacent frames. The loss function is the mean squared error (MSE) loss393

between normalised masked tokens and reconstructed tokens in pixel space. Videos are all randomly394

chosen from the validation sets of both datasets. Our proposed MOFO model ensures that a fixed395

number of masks exist within the motion area compared to the VideoMAE model. These examples396

suggest that, compared to VideoMAE, our MOFO model reconstructs the samples in the motion area397

significantly more accurately, demonstrating that the model has focused on the motion area. We can398

produce satisfying reconstruction results, mainly when motion occurs with our MOFO, by applying399

extremely high ratio masking at random (90%) while always masking a fixed percentage of the tubes400

(75%) inside the motion area.401

B Motion-focused Finetuning402

Setup Details Given a set of patches {pi}N1 , the transformer yields two sets of embeddings:403

{einner}Ninner
j=1 for the inner motion boxes and {eouter}Nouter

k=1 for the outer ones, as described by:404

{einner}Ninner
j=1 , {eouter}Nouter

k=1 = ViT
(
{pi}N1

)
(2)

These embeddings are then processed by a cross-attention mechanism, where Q, K, and V represent405

query, key, and value, respectively. The CrossAttention function is formalised as follows:406

CrossAttention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (3)

where Q = einner,K = V = eouter. In the context of multi-head attention, each attention head i407

is computed by applying the CrossAttention function to the query, key, and value matrices, each408

weighted by a different learned weight matrix WQ
i ∈ Rdmodel×dq ,W k

i ∈ Rdmodel×dk ,WV
i ∈409

Rdmodel×dv respectively:410

headi = CrossAttention(QWQ
i ,KWK

i , V WV
i ) (4)

Finally, the fused embedding efused is computed by concatenating the results from all attention411

heads and then applying another learned weight matrix WO ∈ Rhdv×dmodel . This multi-head cross-412
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Figure 4: Qualitative Comparison on reconstructions using VideoMAE and MOFO on Epic-
Kitchens dataset. MOFO Reconstructions of videos are predicted by MOFO pre-trained with a
masking ratio of 90% and an inside masking ratio of 75% .
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Figure 5: Qualitative Comparison on reconstructions using VideoMAE and MOFO on Something-
Something V2 dataset. MOFO Reconstructions of videos are predicted by MOFO pre-trained with
a masking ratio of 90% and an inside masking ratio of 75%.
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attention (MCA) operation can be represented as:413

efused = MCA(Q,K, V ) = Concat (head1, · · · , headh)WO (5)

We employ h = 3 parallel attention layers, or heads, in this work. We also use dq = dk = dv =414

dmodel for each. The model is ultimately finetuned with a cross-entropy loss L :415

L = −
∑
n

yn log ŷn

ŷ = FC(efused)

(6)

where, yn is the true label for nth video clip, ŷn is its predicted label, and FC is the fully connected416

layers typically used for classification.417

MCA hyper-parameters ablation. We list the MCA hyperparameters used in our MOFO finetun-418

ing experiments here. We experiment with various head and depth settings when Epic-Kitchens is419

the target dataset shown in Table 2. We experiment with these parameters for the verb task on Epic-420

Kitchens to find the best choice for the cross-attention layer we suggested for MOFO finetuning.421

The final head and depth are 3 and 1, respectively.422

Table 2: Ablation experiment for number of head and depth in MOFO finetuning

Finetuning method Backbone training CA heads CA depths
Epic-Kitchens

Verb
Top-1

VideoMAE VideoMAE - - 71.6
MOFO VideoMAE 1 1 73.5
MOFO VideoMAE 1 2 73.8
MOFO VideoMAE 1 3 73.6
MOFO VideoMAE 2 1 73.7
MOFO VideoMAE 2 2 73.3
MOFO VideoMAE 3 1 74.0
MOFO VideoMAE 3 2 73.5
MOFO VideoMAE 4 1 73.8
MOFO VideoMAE 4 2 73.3

Visualisation of GradCAM using MOFO self-supervision We visualise the GradCAM and mo-423

tion map in Fig. 6 for the samples in which VideoMAE can’t identify the class, but our MOFO can.424

The attention maps show how effective our approach is in capturing the motion area. Visualisation425

of important areas. The heatmap indicates how much the pretrained model attends to the region.426

C Ablation Study427

We finetune the learnt model for action classification to evaluate the learned model as a pretrained428

model and train on a new downstream task with the learned representation. We perform such an429

evaluation on our self-supervised model to gain some insights into the generality of the learned fea-430

tures. For finetuning, we follow the same protocol in Tong et al. [2022] to provide a fair comparison431

and call it regular finetuning. The entire feature encoder and a linear layer are finetuned end-to-end432

with cross-entropy loss, The recognition accuracy for our MOFO SSL using regular finetuning is433

reported in Table 3 shown as MOFO*. We demonstrate significant performance improvement over434

the other self-supervised approaches, comparable to the best-supervised approach. All variants of435

our model are presented in section A outperformed the existing result using ViT-MAE, but we436

found that the 75% inside masking ratio worked the best. Compared to VideoMAE Tong et al.437

[2022], our approach achieves significantly better results while the number of backbone parameters438

remains the same. While MOFO** indicates our result with pretraining on non-motion SSL and439

MOFO finetuning, which further increases accuracy, MOFO† denotes the MOFO SSL and MOFO440

finetuning, which we mention in Table 3 as MOFO(Proposed), and this provides the greatest perfor-441

mance over the best-performing methods on Epic-Kitchens verb, noun and action classification and442

on Something Something V2 action classification.443
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Figure 6: We visualise the attention maps generated by GradCAM based on VideoMAE and MOFO
for Epic-Kitchens and the Something-Something V2 dataset. The attention maps show that our
proposed approach can better capture the motion area.
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Table 3: Human activity recognition on Epic-Kitchens and Something-Something V2 (SSV2) in
terms of Top-1 and Top-5 accuracy. blue: This is the result computed by us using the public code
MOFO* is pretrained by our MOFO SSL and uses non-MOFO finetuning. MOFO** This is our
result with pretraining on non-MOFO SSL and has MOFO finetuning. MOFO† denotes the MOFO
SSL and MOFO finetuning.

Method Backbone Param
SSV2 Epic-Kitchens
Action Verb Noun Action

Top-1 Top-5 Top-1 Top-1 Top-1

Supervised

TDNEN Wang et al. [2021] ResNet101Œ2 88 69.6 92.2 - - -
SlowFast Feichtenhofer et al. [2019] ResNet101 53 63.1 87.6 65.6 50.0 38.5

TSM Lin et al. [2019] ResNet-50 - 63.4 88.5 67.9 49.0 38.3
MViTv1 Fan et al. [2021] MViTv1-B 37 67.7 90.9 - -

TimeSformer Bertasius et al. [2021] ViT-B 121 59.9 - - - -
TimeSformer Bertasius et al. [2021] ViT-L 430 62.4 - - - -

ViViT FE Arnab et al. [2021] ViT-L - 65.9 89.9 66.4 56.8 44.0
Mformer Patrick et al. [2021] ViT-B 109 66.5 90.1 66.7 56.5 43.1
Mformer Patrick et al. [2021] ViT-L 382 68.1 91.2 67.1 57.6 44.1
Video SWin Liu et al. [2022] Swin-B 88 69.6 92.7 67.8 57.0 46.1

Self-supervised

VIMPAC Tan et al. [2021] ViT-L 307 68.1 - - - -
BEVT Wang et al. [2022] Swin-B 88 70.6 - - - -

VideoMAE Tong et al. [2022] ViT-B 87 70.8 92.4 71.6 66.0 53.2
ST-MAE Feichtenhofer et al. [2022] ViT-L 304 72.1 - - - -

OmniMAE Girdhar et al. [2022a] ViT-B 87 69.5 - - - 39.3
Omnivore(Swin-B) Girdhar et al. [2022b] ViT-B - 71.4 93.5 69.5 61.7 49.9

Ours(MOFO*) ViT-B 87 72.7 94.2 73.0 67.1 54.1
Ours(MOFO**) ViT-B 102 74.7 95.0 74.0 68.0 54.5
Ours(MOFO†) ViT-B 102 75.5 95.3 74.2 68.1 54.5

Table 4: Human activity recognition on Epic-Kitchens and Something-Something V2 in terms of
Top-1 accuracy. blue: This is the result computed by us using the public code MOFO* is pretrained
by our MOFO SSL and uses non-MOFO (regular) finetuning.

Method Backbone Pretrain Dataset
Something-Something V2 Epic-Kitchens

Action Verb Noun Action
Top-1 Top-1 Top-1 Top-1

VideoMAE Tong et al. [2022] ViT-B Something − SomethingV 2 70.8 70.2 62.9 50.7
VideoMAE Tong et al. [2022] ViT-B Epic−Kitchens 67.3 71.6 66.0 53.2

Ours(MOFO*) ViT-B Something − SomethingV 2 72.7 70.0 62.7 50.6
Ours(MOFO*) ViT-B Epic−Kitchens 67.4 73.0 67.1 54.1

D Domain Generalization444

Domain generalisation aims to build a predictor that can perform well in an unseen test domain,445

known as out-of-distribution generalisation. The main objective of this experiment is to learning446

video representations that transfer well to a novel previously unseen dataset. We take the MOFO447

and non-MOFO pretrained models that have already learned features from one dataset and finetune448

them to adapt them to a new dataset. Results in Table ?? show that our proposed MOFO model449

and non-MOFO pretrained model got on-par results; our MOFO pretrained model’s accuracy on450

SSV2 is marginally higher when pretraining is done on Epic-Kitchens, and marginally worse on451

Epic-Kitchens when pretraining is done on SSV2. These results have inspired me to design a self-452

supervision task to enhance generalisation.453

E Automatic Motion Area Detection454

Automatic vs. supervised motion area detection. We compare the results using our automatically455

detected motion areas and the ground truth bounding box annotation provided by Damen et al.456
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(a)

Method Annotation
Epic-Kitchens

Verb
Top-1

MOFO supervision
Supervised 73.26

Automatic(ours) 72.99

(b)

Figure 7: (a) Comparison between the unsupervised and supervised motion area detection, green
rectangles indicate the unsupervised while red ones show supervised detected motion area. (b) Effect
of supervised vs. automatic motion area utilisation in MOFO.

[2022] on the Epic-Kitchens dataset in Table 7(b). Our automatic motion detection results are close457

compared to supervised annotations, as seen in Table 7(b), despite the challenging camera motion458

from the egocentric videos.459

We compute the Intersection over the Union (IoU) metric to compare our automatic detector with460

the supervised annotated bounding boxes on both datasets Damen et al. [2022], Materzynska et al.461

[2020]. For the Epic-Kitchens dataset, the IoU is 40%, and for Something-Something V2, the IoU462

is 31%. Although these numbers are lower, our automatic motion detection only detects motion463

and ignores unnecessary static objects near the motion. As you can see in Fig. 7(a), our automatic464

motion box still focuses on the area and object of interest, which is the key requirement.465

In Fig. 8, we present additional qualitative examples of our automatic motion area detection com-466

pared with the provided supervised annotation for Epic-Kitchens and Something-Something V2467

datasets. These samples show that our proposed automatic motion area detection minimises the468

impact of the static object in the motion box while highlighting the motion areas. Our automatic mo-469

tion box concentrates on the area and item of interest, which is necessary for our proposed approach,470

even for self-supervision or finetuning.471

F Related Work472

Self-supervised learning (SSL) is a developing machine learning technique that has the potential to473

address the issues brought about by over-dependenceăon labelled data. High-quality labelled data474

have been essential for many years to develop intelligent systems using machine learning techniques.475

Consequently, high-quality annotated data costs are a significant bottleneck in the training process.476

Grow the research and development of generic AI systems at an inexpensive cost. Self-learning477

mechanisms with unstructured data are one of the top focuses of AI researchers. Collecting and la-478

belling a wide range of diverse data is almost impossible. Researchers are developing self-supervised479

learning (SSL) methods that can pick up on fine details in data to address this issue. The introduction480

to self-supervised learning in video understanding is followed by a review of the literature on video481

action recognition, the downstream task we have recently focused on.482

F .1 Self-supervised Video Representation learning483

The effectiveness of deep learning-based computer vision relies on the availability of a considerable484

amount of annotated data, which is time-consuming and expensive to obtain. Supervised learning485

is trained over a given task with a large, manually labelled dataset. In addition to the costly manual486

labelling, generalisation mistakes and erroneous correlations are other problems with supervised487

learning.488

Large labelled datasets are difficult to create in particular situations, making it challenging to con-489

struct computer vision algorithms. Most computer vision applications in the real world use visual490

categories not included in a common benchmark dataset. In specific applications, visual categories491

or their appearance are dynamic and vary over time. Therefore, self-supervised learning could be492
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Figure 8: Comparison between the unsupervised and supervised motion area detection, green rect-
angles indicate the unsupervised while red ones show supervised detected motion area.

created that uses a limited number of labelled examples to learn to recognise new concepts effec-493

tively. A substantial research effort focuses on learning from unlabeled data, which is much easier494

to acquire in real-world applications. The ultimate goal is to make it possible for machines to com-495

prehend new concepts quickly after only viewing a few labelled instances, similar to how quickly496

humans can learn.497

SSL has gained considerable popularity since its introduction in natural language processing Devlin498

et al. [2019] and computer vision Doersch et al. [2015], Chen et al. [2020], Xie et al. [2020] owing to499

its ability to learn effective data representations without requiring manual labels. Acquiring detailed500

manual labels is arguably more difficult (and often expensive) in many image and video-related501

tasks, which makes SSL an increasingly popular paradigm in video analysis.502

The goal of video self-supervised learning for computer vision is to learn meaningful video repre-503

sentations without explicit supervision, and the model trains itself to learn one part of the input from504

another part of the input. Self-supervised learning algorithms can learn representations by solving505

pretext tasks that can be formulated using only unlabeled data. These auxiliary tasks can guide the506

model to learn intermediate representations of data. By solving these tasks, the model learns to507

extract relevant features from the input data and understand the underlying structural meaning ben-508

eficial for practical downstream tasks. Based on the surrogate task employed, the training objective509

for self-supervised learning is defined, and model parameters are updated through gradient descent510

to minimise prediction error. Therefore, models are trained to solve these pretext tasks. As a result,511

they learn to capture meaningful and useful representations that can be used for various downstream512

video understanding tasks, such as video action recognition F .2.513
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Video-based self-supervised learning techniques start from image tasks. Several specifically de-514

signed tasks, including image inpainting Pathak et al. [2016], solving jigsaw puzzles Noroozi and515

Favaro [2016], and image colour channel prediction Zhang et al. [2016] are proposed to learn image516

features. SSL has recently yielded successful results in learning visual representations from unla-517

beled videos with various pretext tasks Yun et al. [2022], Caron et al. [2021], Gupta et al. [2022].518

These methods use a backbone that has been pretrained with images or videos in a self-supervised519

manner to perform tasks on videos, including contrastive learning Yun et al. [2022], Guo et al.520

[2022], Yang et al. [2020], self-distillation Caron et al. [2021], or Masked Modeling which selects521

a random section of the input sequence to mask out, and then predicts the features of those sec-522

tions Wei et al. [2022], Gupta et al. [2022], Tong et al. [2022], Girdhar et al. [2022a]. Many existing523

works Fernando et al. [2017], Xu et al. [2019], Wang et al. [2020a] have been proposed to focus on524

temporal information, such as making models sensitive to the temporal differences of input data.525

As mentioned before, earlier works build on a concept of self-supervision by taking RGB frames as526

input to learning to predict action concepts Wang and Koniusz [2021], using Convolutional Neural527

Networks (CNNs) models to use frame-wise features and average pooling Karpathy et al. [2014] dis-528

carding the temporal order. Thus, frame-wise CNN scores were fed to LSTMs Donahue et al. [2015]529

while in two-stream networks Simonyan and Zisserman [2014], representations are computed for530

each RGB frame and every ten stacked optical flow frames. Spatio-temporal 3D CNN filters Tran531

et al. [2015], Varol et al. [2017], Feichtenhofer et al. [2017], Carreira and Zisserman [2017] model532

spatio-temporal patterns.Persistence of Appearance, a motion cue proposed by PAN Zhang et al.533

[2019], allows the network to extract the motion information from adjacent RGB frames directly.534

Vision Transformers (ViTs) Dosovitskiy et al. [2020], Khan et al. [2022] have emerged as an ef-535

fective alternative to traditional CNNs. The architecture of Vision Transformer is inspired by the536

prominent Transformer encoder Devlin et al. [2018], Vaswani et al. [2017] used in natural language537

processing (NLP) tasks, which process data in the form of a sequence of vectors or tokens. Like the538

word tokens in NLP Transformer, ViT generally divides the image into a grid of non-overlapping539

patches before sending them to a linear projection layer to adjust the token dimensionality. Feed-540

forward and multi-headed self-attention layers are then used to process these tokens. ViTs have a541

wide range of applications in numerous tasks due to their capacity to capture global structure through542

self-attention, such as classification Zhang et al. [2021], Xiong et al. [2022], Li et al. [2022b], object543

detection Chen et al. [2022], Li et al. [2022c], segmentation Choudhury et al. [2022], Caron et al.544

[2021], Baldassarre and Azizpour [2022] and retrieval Gabeur et al. [2020].545

Inspired by ViT Dosovitskiy et al. [2020], ViViT Arnab et al. [2021] and Timesformer Bertasius et al.546

[2021] were the first two works that successfully implemented a pure transformer architecture for547

video classification, improving upon the state of the art previously set by 3D CNNs. In these models,548

the video clip of RGB frames is embedded into 3D patches to produce downsampled feature maps.549

Then, these encoded 3D patches are encoded by a Video Transformer Patrick et al. [2021], Zhang550

et al. [2022]. In the following work, Arnab et al. [2021] defines the tubelet embedding tokenisation551

method and inspired some other works to represent a video input by extracting non-overlapping,552

spatiotemporal tubes to propose their method Yan et al. [2022].553

In another line of research, Masked Autoencoders (MAEs) have recently been demonstrated to be554

powerful yet conceptually simple and efficient and have proven an effective pretraining paradigm555

for Transformer models of text Devlin et al. [2018], images He et al. [2022], and, more recently,556

videos Tong et al. [2022]. The learnt self-supervised model from the pretext task can be applied to557

any downstream computer vision tasks, including classification, segmentation, detection, etc.558

Nowadays, encoder-decoder Transformer-based architectures are commonly used in self-supervised559

learning for video representation learning. These architectures take advantage of the Transformer560

models’ strengths, initially created for natural language processing challenges, and adapt them to561

process and comprehend video data. In the context of video representation learning, the encoder-562

decoder Transformer architecture typically consists of the following components:563

1. Encoder The encoder processes the input video data and generates a condensed represen-564

tation of the video. Each video frame or 3D tublets is typically treated as a sequence of565

features to be input into the Transformer encoder. Multiple layers of self-attentional and566

feed-forward neural networks can be used in the encoder to capture the video’s temporal567

dependencies, spatial relationships, and long-range dependencies.568

2. Decoder: Based on the self-supervised task, the decoder generates a prediction using the569

encoder’s learnt representation. The decoder must solve the surrogate task used for self-570
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supervised learning. For instance, if the self-supervised objective is to anticipate the tem-571

poral order of shuffled frames, the decoder may correctly predict that order.572

In transformer-based architecture, the self-attention mechanism powers both the encoder and de-573

coder. Self-attention architectures typically are made up of a series of transformer blocks. Each574

transformer block consists of two sublayers: a feed-forward layer and a multi-head self-attention575

layer. An input is divided into patches, and attention evaluates each 3D input patch’s usefulness be-576

fore drawing on it to produce the output. The Transformer’s self-attention mechanism lets the model577

focus on different parts of the video frames while considering their dependencies. Therefore, con-578

sidering their relative importance, it draws from each input component to produce the output. The579

query(Q), key(K), and value(V ) vectors are the three sets of calculated vectors in the transformer580

architecture. These are determined by multiplying the input by a linear transformation.581

F .2 Video Action Recognition582

Although it is simple for humans to recognise and categorise actions in video, automating this583

process is challenging. Human action recognition in video is of interest for applications such as584

automated surveillance Khan et al. [2020] detecting anomalies in a cameras field of view that has at-585

tracted attention from vision researchers Vaswani et al. [2005], elderly behaviour monitoring Sarkar586

et al. [2005], human-computer interaction, content-based video retrieval Sowmyayani and Rani587

[2022], and video summarization Shabani et al. [2011]. Activity analysis must be able to iden-588

tify atomic movements like "walking," "bending," and "falling" on their own while monitoring the589

daily activities of elderly people, for instance Shabani et al. [2010]. Therefore, action recognition is590

a challenging problem with many potential applications.591

Action Recognition Datasets Human action recognition aims to understand human activities oc-592

curring in a video as humans can understand. While some simple actions, like standing, can be593

recognised from a single frame (image), most human actions are much more complex and occur594

over a more extended period. Therefore, they must be observed through consecutive frames (video).595

To assist organisations in understanding real-time action and dynamic, organic movement, AI/ML596

models use human actionădatasets.597

Something-Something V2 Goyal et al. [2017] This publically available dataset is an extensive collec-598

tion of human-object interaction of densely labelled 174 video sequences. The dataset was created599

by many crowd workers performing pre-trained daily humanobject interaction physical activities;600

220,847 videos and JPG images have variable spatial resolutions and lengths.601

Egocentric vision, sometimes known as first-person vision, is a sub-field of computer vision that602

deals with analysing images and videos captured by a wearable camera, often worn on the head or603

the chest and thus naturally approximates the wearer’s visual field. The idea of using egocentric604

videos has recently been utilised thanks to novel, lightweight and affordable devices such as GoPro605

and similars Núñez-Marcos et al. [2022]. As a fundamental problem in egocentric vision, one of606

the tasks of egocentric action recognition aims to recognise the actions of the camera wearers from607

egocentric videos. This community did not have an extensive dataset to be used for pertaining608

or to have a standard dataset for benchmarking until the appearance of the Epic-Kitchens Damen609

et al. [2018, 2020a,b], the largest and most complete egocentric dataset contains 97 verb classes,610

300 noun classes and 3806 action classes. Understanding egocentric videos requires detecting the611

actor’s movement and the object with which the actor interacts.612

Several existing methods leveraged object detection to improve egocentric video recognition Wang613

et al. [2020b,b], Wu et al. [2019], Ma et al. [2016], among which Wu et al. [2019] also incorporate614

temporal contexts to help understand the ongoing action. These approaches may have limited uses in615

real-world systems since they demand time-consuming, labour-intensive item detection annotations616

and are computationally expensive. In contrast, our framework does not depend on costly object617

detectors. Recently, Shanetal.Shan et al. [2020] developed a hand-object detector to locate the active618

object. When the detector is well-trained, it can be deployed on the target dataset; however, running619

it on high-resolution frames still costs far more than using our method.620

Motion in Action Recognition: Motion cuesAkar et al. [2022], Wang et al. [2019], Li et al. [2021]621

have been recognised as necessary for video understanding in the past few years. Most works use622

optical flow, a motion representation component in many video recognition techniques, to obtain623
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the statistical motion labels required for their work Yang et al. [2021], separating the background624

from the main objects in optical flow frames. Optical flow is the pattern of visible motion of objects625

and edges and helps calculate the motion vector of every pixel in a video frame. Optical flow is626

widely used in many video processing applications as a motion representation feature that can give627

important information about the spatial arrangement of the objects viewed and the rate of change of628

this arrangement. Optical flow-based techniques are sensitive to camera motion since they capture629

absolute movement. Optical flow computation is one of the fundamental tasks in computer vision.630

In practice, the flow has been helpful for a wide range of problems, for example, pose estimation631

Pfister et al. [2015], representation learning Senturk et al. [2022], segmentation Luiten et al. [2020],632

and even utilised as a tracking substitute for visual signals (RGB images) Sidenbladh et al. [2000].633

Since optical flow can capture continuous or smoothly varying motion, such as motion caused by634

a change in camera view, it is not a good idea to use it to detect a change in salient objects. To635

build pixel-level representations from raw high-resolution videos with complex scenes, Xiong et al.636

[2021] proposes a self-supervised representation learning framework based on a flow equivariance637

objective. This representation is beneficial for object detection. In another work Li et al. [2019], a638

multi-task motion-guided video salient object detection network is proposed consisting of two sub-639

networks. One sub-network is used to detect salient objects in still images, and the other is used to640

detect motion saliency in optical flow images. Most motion descriptors use absolute motions and641

thus only work well when the camera and background are relatively static, such as Fleet & Jepson’s642

phase-based features Fleet and Jepson [1993] and Viola et al.’s generalised wavelet features Viola643

et al. [2005]. Therefore, the critical problem is identifying characteristics that accurately capture the644

motion of hands or objects while impervious to the camera and backdrop motion.645

Relying only on optical flow to capture the motion is not a robust solution as it is heavily affected646

by camera motion. To mitigate this problem, Wang et al. [2019] presented a self-supervised spa-647

tiotemporal video representation by predicting a set of statistical labels derived from motion and648

appearance statistics using extracting optical flow across each frame and two motion boundaries649

Dalal et al. [2006] which are obtained by computing gradients separately on the horizontal and650

vertical components of the optical flow.651

In another line of work, masked autoencoder models have been proposed to learn underlying data652

distribution in a self-supervised manner without explicitly focusing on motion Tong et al. [2022].653

Even though this model can perform spatiotemporal reasoning over content, the encoder backbone654

could be more effective in capturing motion representations. The critical contribution of our work655

is explicitly imposing motion information in both SSL phases in the self-supervised pretext training656

without human annotations and then in the finetuning stage, besides introducing an automatic motion657

detection to detect salient objects and motion in the video without the overhead and limitation of a658

pretrained and annotated object detector.659
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