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Figure 1. Our model allows simultaneous compositing of several objects with text and layout control, offering harmonious
and natural results (top row). Object relations and actions can be controlled through text, allowing reposing and automatic
addition of necessary objects (i.e. flowing tea). Pose and layout can be controlled via bounding boxes provided as input. Our
model can also be used for customization (bottom row), seamlessly integrating given objects into described backgrounds.

Abstract

We introduce the first generative model capable of si-
multaneous multi-object compositing, guided by both text
and layout. Our model allows for the addition of multiple
objects within a scene, capturing a range of interactions
from simple positional relations (e.g., next to, in front of) to
complex actions requiring reposing (e.g., hugging, playing
guitar). When an interaction implies additional props, like
‘taking a selfie’, our model autonomously generates these
supporting objects. By jointly training for compositing and
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subject-driven generation, also known as customization, we
achieve a more balanced integration of textual and visual
inputs for text-driven object compositing. As a result, we
obtain a versatile model with state-of-the-art performance
in both tasks. We further present a data generation pipeline
leveraging visual and language models to effortlessly syn-
thesize multimodal, aligned training data.

1. Introduction
In recent years, advancements in image generation and edit-
ing have enabled the creation of realistic and complex visual
scenes from various input modalities, such as text descrip-
tions [11, 30, 33]. These tools are becoming essential for



enhancing creativity and streamlining workflows. A key
component in this process is object compositing, enabling
seamless integration of new objects in an existing scene.
However, current compositing models [7, 40, 43, 48, 50]
are generally limited to handling a single object at a time,
requiring sequential steps to composite multiple objects into
a scene. This process is cumbersome and fails to capture
the complex, real-world interactions between multiple ob-
jects, especially when simultaneous repositioning is neces-
sary. For instance, sequential compositing struggles to ac-
curately create interactions where objects need to interact
very closely, such as two figures hugging, or someone play-
ing an instrument (Fig 2).

To address these limitations , we introduce a novel text-
guided and layout-guided multi-object compositing model
designed to handle and harmonize multiple objects si-
multaneously within a single composition. This model
bridges the gap between single object insertion and real-
istic, context-aware scene construction via three main fea-
tures: (i) it allows for simultaneous reposing and complex
interaction between objects, seamlessly capturing intricate
relationships; (ii) it ensures visual coherence between both
the new objects and the scene, achieved through synchro-
nized relighting and reharmonization; (iii) it automatically
generates additional elements essential to the action or in-
teraction being depicted (e.g., a leash for a dog-walking sce-
nario, or liquid pouring from a bottle to a glass), creating a
more cohesive and natural scene.

Our model accepts multimodal input, including object
images, text, object-specific bounding boxes, a background
image and a mask delimiting the overall compositing re-
gion. To enable effective and balanced integration of these
modalities, our model is trained on diverse, multimodal data
that provides rich grounding for scene context and object
relationships, allowing it to understand and implement nu-
anced multi-object compositions. Collecting data with all
these aligned modalities is a complex task. However, ad-
vancements in Large Language Models (LLMs) [2, 10, 24]
and Visual Language Models (VLMs) [25] offer a solution.
We introduce a data generation pipeline that leverages these
models to synthesize essential missing data, enabling the
creation of a fully aligned, multimodal training set. By
leveraging varied data sources during training and balanc-
ing real and synthetic data, our model learns to anticipate
and position additional supporting objects, if needed, to en-
sure natural compositions. Furthermore, we jointly train the
model on compositing and customization tasks to improve
compositing performance and offer more versatility. This
dual approach allows the model to separately focus on two
key subtasks in multi-object compositing: (i) generating re-
alistic interactions with strong text-image alignment, and
(ii) improving inpainting, harmonization and relighting.

Our contributions are as follows:

Figure 2. Comparison of simultaneous vs. sequential object com-
positing. Sequential addition prevents reposing of previously com-
posited objects, resulting in limited, less cohesive compositions.

• We present the first generative model for simultaneous
multi-object compositing, addressing the limitations of
sequential object compositing.

• We propose a novel data generation pipeline that com-
bines real labeled data, synthetic captions from vision-
language models, and grounding methods to align global
and local captions with images for improved training.

• We leverage customization as an auxiliary task to improve
text and image alignment in compositing, resulting in a
model capable of performing both tasks with performance
comparable to state-of-the-art customization and genera-
tive object compositing models.

2. Related Work
Generative Object Compositing. Generative object com-
positing has evolved from traditional methods relying on
hand-crafted features [21], 3D modeling [17], and render-
ing [16] to leveraging the efficiency of diffusion models.
Modern diffusion-based approaches, such as ObjectStitch
[39] and Paint by Example [48], integrate object and back-
ground but struggle with identity preservation due to re-
liance on CLIP [32]. TF-ICON [26] improves on identity
retention with noise modeling and composite self-attention
injection, though it lacks flexibility in object reposing. [35]
and [20] improve performance by either using a secondary
U-Net encoder or focusing on human generation. Recent
works like AnyDoor [7] and IMPRINT [40] use DINO v2
[27] for stronger identity fidelity and support more flexible
shape and pose control. ControlCom [50] enables separate
control over blending, harmonization, reposing and com-
positing, while CustomNet [49] allows control of viewpoint
and location. [43] expands generation across the entire im-
age, offering an unconstrained approach that simplifies se-
quential object additions. However, none of these methods
support simultaneous multi-object compositing with inter-
dependent reposing or text-based inputs for refined control,
both essential for interactive, complex scenes.
Subject-Driven Generation Building on recent advances
in text-to-image generation, subject-driven approaches aim
to customize images by integrating subject-specific visuals
within text prompts. Approaches like DreamBooth [34] and
Textual Inversion [12] fine-tune a model to recontextualize
a specific subject based on text, while others [6, 15, 38]
bypass fine-tuning via large-scale upstream training. Re-
Imagen [5], SuTI [6], FastComposer [46], ELITE [45] pro-



vide image features from image encoders directly to the U-
Net, as with text control. BLIP-Diffusion [22] enables zero-
shot generation by embedding objects into random back-
grounds but remains limited in handling multiple entities.
GroundingBooth [47] provides a model for grounding text-
to-image generation, specifying a bounding box for each
object as part of the input. Leveraging Multimodal Large
Language Models (MLLMs) [2, 10, 44] offers efficient in-
tegration of text and visual inputs. GILL [18], Emu [41],
and DreamLLM [9] align MLLM outputs with diffusion
encoders for combined visual-language generation, though
struggle to retain fine-grained visual details due to align-
ment at semantic level. KOSMOS-G [28] and UNIMO-G
[23] combine a MLLM as text and image encoder with a U-
Net from Stable Diffusion as image decoder by either train-
ing a subnetwork that allows their integration or performing
end-to-end training of the U-Net, respectively. Emu2Gen
[42] further adds support for bounding box guidance for
each subject, enriching image layout control.

3. Methodology
We propose a diffusion-based model capable of simultane-
ously compositing multiple objects into a background in a
controlled way, guided by both a layout and a text prompt.
Training this model effectively requires extensive paired
data, including: (i) ground truth images containing multi-
ple objects, (ii) text descriptions with grounding informa-
tion for these objects, (iii) segmented images of the objects,
and (iv) their bounding boxes in the ground truth image. For
simplicity, we focus on two objects at a time, which may
interact through complex actions or positional relationships
in the ground truth image. We present model architecture
in Section 3.1, training and inference strategies in Sections
3.2 and 3.3, and data generation pipeline in Section 3.4.

3.1. Model Architecture

Our model takes as input a background image IBG, a lay-
out IL, N object images Oi, with i ∈ {0 . . . , N −1}, and a
descriptive caption C. The layout includes a bounding box
for each object (M0...,N−1), along with a larger box MG

that encloses them all, defining the region to be modified
(inpainting region), allowing for additional room for object-
object interactions. We encode all layout information on a
single mask, where different values are assigned to the pix-
els belonging to each object’s bounding box, their overlap-
ping, the rest of the inpainting region and the background.
As shown in Fig 3, IL is concatenated to the 3-channel in-
put noise I and (1−MG) ∗ IBG, a version of IBG, where
the inpainting region is masked out. These concatenated
images are fed into the model’s backbone, Stable Diffusion
1.5 (SD) [33], consisting of a variational autoencoder (G,
D) and a U-Net. Each composited object Oi is processed
by an image encoder EI (DINO ViT-G/14 [27]) and a con-

Figure 3. Model Architecture. Our model consists of: (i) A Stable
Diffusion backbone including a U-Net and an autoencoder (G, D);
(ii) a text encoder ET ; (iii) an image encoder EI ; and (iv) an adap-
tor A. Given a text prompt C and images of N objects O0...,N−1,
the text embedding from (iii) is augmented by automatically ap-
pending each image embedding after its corresponding text tokens.
The resulting multimodal embedding H is fed to the U-Net via
cross-attention. Masked background image (1−MG) ∗ IBG and
layout IL with object-specific bboxes are concatenated to input I.

tent adaptor A, which aligns the object embeddings with
text embeddings as in [39]. The caption C is encoded us-
ing a text encoder ET (CLIP ViT-L/14 [32]). These embed-
dings are then combined into a multimodal embedding and
fed into the U-Net via cross-attention.
Multimodal Embeddings Providing the model with text
and image information in a balanced and interpretable way
is one of the main challenges of our method. It must per-
form well when either input is missing, and neither com-
ponent must dominate when both are present. The iden-
tity of each object Oi must be preserved in the output
while matching the scene and interactions described by the
caption C. Grounding information specifies the subset of
words Ci in the caption C that correspond to each object
image Oi. After encoding the text, each object embedding
A(EI(Oi)) is concatenated after ET (Ci), resulting in a mul-
timodal embedding H that is then passed to the U-Net via
cross-attention. We refer to the set of visual and textual in-
formation referring to Ci and Oi in the embedding H as Hi.

3.2. Training Strategy
Our training strategy is designed to balance textual and vi-
sual information, enabling object reposing and the genera-
tion of described backgrounds and new objects while pre-
serving each object’s identity and preventing identity mix-
ing. To ensure the model is still able to perform with only
text or image input, we randomly drop each modality with
a 30% probability during training.
Customization as an Auxiliary Task To enhance com-
positing performance and provide a more versatile model,
we jointly train on multi-object compositing and multi-
entity subject-guided generation. With 50% probability, the



inpainting region MG is replaced by a mask covering the
entire image, and IBG is replaced with an empty image.
In this customization setting, the model can focus on pre-
serving object identity while reposing objects and generat-
ing scenes aligned with the text, without being burdened by
compositing tasks like harmonization, relighting, or back-
ground inpainting. Introducing this joint training results in
a better balance between textual and visual alignment.
Object Identity Disentanglement Diffusion models often
struggle to accurately represent multiple subjects due to at-
tention layers blending visual features and causing semantic
leakage between them. Cross-attention maps indicate how
text tokens influence latent pixels [13]. When tokens share
similar semantics, a single pixel may respond to all, leading
to identity blending. Additionally, self-attention features
create dense correspondences within the same subject and
across semantically similar ones [1, 4, 8]. While this behav-
ior aids in generating coherent images with well-integrated
subjects and backgrounds, it can also cause visual feature
leakage between similar subjects [8]. To reduce this leakage
and encourage identity separation, we introduce two addi-
tional losses (Lc, Ls) inspired by [8, 46]:

Lc =

N−1∑
i=0

1

N

(
1−

∑
x∈Si,
h∈Hi

Â [x,h]

∑
x∈Si,
h∈Hi

Â [x,h] +
∑

x/∈Si,
h∈Hi

Â [x,h]

)
, (1)

Ls =
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i=0

1

N

(
1− 1

1 +
∑

x∈Si,
y∈Sj ,j ̸=i

Â [x,y]

)
, (2)

where Â is the mean attention map, averaged across
heads and layers, Si is the segmentation map of Oi in the
ground truth image, and x, y correspond to pixel coordi-
nates in It (the noisy version of I at timestep t). For each
x, Lc encourages the cross-attention maps obtained from
visual-language information from Ci and Oi (h ∈ Hi) to be
close to their corresponding segmentation map Si. Ls dis-
courages pixels x ∈ Si to attend to pixels y ∈ Sj , ∀j ̸= i.

Based on the inpainting version of Stable Diffusion v1.5
[33], our model is fine-tuned by optimizing a combination
of three losses: L = Ld + αLc + βLs.

Ld = EIc,H,t,ϵ∼N (0,1)

[
∥ϵ− ϵθ (Ic,H, t)∥22

]
, (3)

where Ic = [It, IL, (1 − MG) ∗ IBG] (It: noisy
version of the input image I at timestep t, IL: layout,
(1−MG) ∗ IBG: masked background image, [·]: concate-
nation operation across the channel dimension), H: multi-
modal embedding, ϵθ:denoising model being optimized.

3.3. Inference Strategy
Although attention-based losses help disentangle visual and
semantic features of different objects during training, some
information leakage can still occur at inference. To address
this, and to further encourage the desired layout IL, all
cross-attention scores corresponding to h ∈ Hi are masked
with Mi. Additionally, since [EoT ] tokens are known to
contain information about foreground objects [51], we mask
their corresponding cross-attention scores with the union of
all object masks

⋃
i=0...N−1 Mi.

3.4. Training Data Generation
Balanced, curated data is essential for effective diffusion
model training. For our model to learn correct object in-
teraction, natural compositing, text-image alignment and
identity preservation, paired training data must meet spe-
cific criteria: (i) diverse range of objects and relationships;
(ii) varied text prompt styles; (iii) object images with differ-
ent poses, views and lighting than the ground truth image;
(iv) high-quality images; and (v) a large dataset size. Since
no single source can provide all these qualities, we use three
complementary data sources: Video Data, In-the-Wild Im-
ages, and Manually Collected Data. See below for brief
descriptions and SuppMat for more specific details.

Video Data We use annotated data from video object re-
lation datasets [36, 37], where each frame includes bound-
ing boxes identifying objects and actions or positional rela-
tionships between object pairs as <object A> <relation>
<object B>. For each annotated relation, we select one
frame depicting it as the ground truth image, a second
frame including object A and a third with object B. This
provides alternative views for each object (segmented via
[31]), which is essential for training the model to learn ob-
ject reposing for intended interactions. To ensure identity
consistency, we keep DINO score [27] similarity for each
object’s views above a threshold (MSE ≥ 0.8). We provide
LLaVA (13B) [24] with ground truth images and annotated
relations, obtaining grammatically correct captions to use as
aligned text prompts. Although this data source meets most
of our criteria, it typically involves lower-quality frames.

Image Data An automated pipeline for paired data gen-
eration from in-the-wild images can provide unlimited data
with high-quality images to enhance model training. We
consider two approaches: top-down and bottom-up. (i)
Top-down approach: Starting with a single image, we use
a commercial subject selection tool to identify the main ob-
jects. A semantic segmentator [31] helps us select images
where multiple key objects are present. From these, we ran-
domly pick two entities to serve as composited objects. We
outline each object in a different color on the original image
and input it into ViP-LLaVA (13B) [3], which sequentially
identifies the selected entities and generates a caption de-
scribing their relationship. (ii) Bottom-up approach: To



increase caption diversity, we include open-source images
with ground-truth captions, such as those in OpenImages
[19]. Given an image and its caption, GroundingDINO [25]
extracts grounding information that correlates the two. Us-
ing a semantic segmentator [31] and filtering for quality
(e.g., removing duplicates, background entities, and objects
that are too large (>75%) or too small (<10%)), we ran-
domly select two grounded entities as composited objects.
This approach adds diversity to image layouts and caption
formats, enhancing model robustness through a mix of local
and global descriptions. However, neither of the approaches
provides different views of the objects, making them unsuit-
able as stand-alone sources for model training.

Manually Collected Data We manually compile a
dataset containing 16,896 images of humans interacting
with objects, 3,898 images of the same humans in neutral
poses, and 1,250 images of those objects alone, captured
from different angles and scenes. This data is segmented
using [31] and their caption and grounding information is
obtained using ViP-LLaVA (13B) [3], following the same
process described above. This collection provides a small
curated set of high-quality images, including different views
of each entity and covering human-object interactions, one
of the most intricate relationships we aim to replicate.

4. Experiments
Evaluation Dataset We evaluate image and text alignment
in the customization task using the set of 300 paired two en-
tities and text from MultiBench [23], a benchmark crafted
for evaluating multi-entity subject-driven generation. We
manually craft a bounding box for each category (e.g. food,
toy) to be used as input for our model and [42]. For eval-
uating multi-object compositing, we create a test set of
118 paired data (background image, text prompt, two en-
tities and their corresponding bounding boxes). We en-
sure different positional and action-based prompts are in-
cluded, and entities include objects, animals and humans
from [23, 29, 34]. We also evaluate identity preservation on
Dreambooth, the single-object compositing set consisting
of 113 background-object pairs used in [40, 43].
Evaluation Metrics We assess alignment to input text
prompt and object images via CLIP-Score [14] (CLIP-T,
CLIP-I) and DINO-Score [27] (DINO). When bounding
boxes are specified for each object, we compare each input
object image to a corresponding cropped region within the
generated image, as in [7, 43, 48]. In the customization set-
ting, where models may not specify object locations, each
input object is instead compared to the entire generated im-
age, following [23, 28]. We refer to this metric variation
as CLIP-Igl, DINOgl. For scenes with multiple objects,
we average DINO(gl) and CLIP-I(gl) scores across all ob-
jects. For compositing multiple objects with single-object
compositing models [7, 40, 43, 48, 50], we add objects se-
quentially. Thus, we compute performance for all possi-

Method
DreamBooth MultiComp -overlap MultiComp -nonoverlap

CLIP-I↑ DINO↑ CLIP-I↑ DINO↑ CLIP-I↑ DINO↑
PbE [48] 0.778 0.799 0.693 0.383 0.720 0.423

ControlCom [50] 0.743 0.705 0.707 0.478 0.740 0.543

AnyDoor [7] 0.806 0.836 0.727 0.520 0.763 0.593

IMPRINT [40] 0.830 0.889 0.713 0.525 0.739 0.576

TOTB [43] 0.809 0.856 0.716 0.485 0.740 0.531

Ours 0.803 0.892 0.741 0.532 0.768 0.579
w/o text 0.816 0.903 0.729 0.505 0.754 0.548
sequential w/ text - - 0.729 0.517 0.760 0.583
sequential w/o text - - 0.723 0.510 0.756 0.578

Table 1. Quantitative comparison of identity preservation against
state-of-the-art generative object compositing methods. Single ob-
ject compositing is evaluated on DreamBooth set. Two object
compositing is on MultiComp set, comparing to both simultane-
ous and sequential uses of our model, by guiding inference with
and without text. We distinguish between interacting (overlapping
bboxes) and non-interacting cases for clarity. Details in SuppMat.

ble object-order sequences and average the results. To as-
sess alignment between text prompts and composite results,
we calculate CLIP-T by comparing the entire image to the
text prompt (CLIP-Tgl) and by comparing the cropped com-
positing area to the text prompt (CLIP-Tloc), evaluating lo-
cal and global alignment. Additionally, we conduct user
studies to evaluate alignment to input modalities, quality of
composited images, and realism of generated interactions.
Training Details The U-Net and adaptor A are jointly
trained on 8 A100, using Adam optimizer, learning rate of
4 × 10−6 and effective batch size of 1024, via gradient ac-
cumulation. Losses are balanced using α = 103, β = 1.
4.1. Comparison to Existing Methods
Our primary task is Object Compositing, but we also train
for Subject-Driven Generation as an auxiliary task. Thus,
we provide comprehensive evaluation across both tasks.
Generative Object Compositing For this task, we com-
pare to recent generative object compositing models: Paint
by Example (PbE) [48], ControlCom [50], AnyDoor [7],
IMPRINT [40], Thinking Outside the BBox (TTOB) [43].
These models support compositing from a single object,
background, and bounding box, requiring sequential runs
to add multiple objects individually. For comparison, we
evaluate our model in three additional inference modes:
(i) without text guidance, (ii) sequential single-object com-
positing, (iii) sequential compositing without text guidance.

As shown in Table 1, our model outperforms all com-
pared models when composited objects interact, i.e. when
bounding boxes overlap. For non-overlapping or single-
object compositions, our model maintains comparable iden-
tity and semantic preservation to state-of-the-art models.
Furthermore, when objects overlap, compositing two ob-
jects simultaneously yields significantly better results than
adding them sequentially, even with the same model, as
in Fig 2. Providing a text description of the interaction
also boosts performance for scenes with multiple objects
but is less critical when compositing a single object or non-



Figure 4. Visual comparison to Generative Object Compositing models [7, 40, 43, 48, 50]. Our model provides more realistic, harmonious
and natural-looking interaction between composited objects via simultaneous multi-object compositing. See SuppMat for more examples.

interacting ones, where the expected composition is clearer.
Fig 4 illustrates several advantages of compositing multiple
objects simultaneously rather than sequentially: (i) it en-
ables more cohesive harmonization and appearance consis-
tency across objects and the scene (rows 1 - 5); (ii) it cap-
tures complex interactions involving object reposing with
ease (rows 1, 6, 7); and (iii) with text guidance, the model
can naturally complete scenes by adding any additional el-
ements needed for realism (row 7).

Multi-Entity Subject-Driven Generation We compare to
customization methods accepting text and multiple object
images as input (BLIP-Diffusion [22], KOSMOS-G [28],
UNIMO-G [23]). We also compare to Emu2Gen [42], addi-

tionally accepting layout guidance, therefore sharing input
modalities with our model and allowing fair comparison.

Although customization is introduced as a proxy task to im-
prove multi-object compositing, our model achieves com-
parable performance to state-of-the-art customization mod-
els, as shown in Table 2. Notably, our model obtains im-
proved text alignment, benefiting from training data balanc-
ing local and global caption descriptions, as well as joint
training with the complex task of object compositing. Ad-
ditionally, our model demonstrates improved performance
in patch-based image metrics (CLIP-I, DINO), indicating
high layout alignment and identity preservation. In contrast,
Emu2Gen obtains lower patch-based than global metrics.



Method CLIP-I↑ DINO↑ CLIP-Igl↑ DINOgl↑ CLIP-Tgl ↑
Input: Text, Object Images

BLIP-Diffusion [22] - - 0.675 0.455 0.249

KOSMOS-G [28] - - 0.704 0.465 0.279

UNIMO-G [23] - - 0.699 0.485 0.293

Input: Text, Object Images, Layout

Emu2-Gen [42] 0.595 0.414 0.616 0.434 0.287

Ours 0.783 0.599 0.688 0.454 0.308

Table 2. Quantitative comparison of identity preservation and
text fidelity against multi-entity subject-driven generation meth-
ods. We compare to state-of-the-art methods on two-entity subset
of MultiBench. For models with layout guidance, additional iden-
tity preservation metrics (CLIP-I, DINO) are provided by consid-
ering cropped regions around each object in the generated images.

Figure 5. Visual comparison of our multi-object compositing
model to Emu2Gen [42]. For fair comparison, exact same set of
inputs (including background image) is provided to each model.

Refer to Fig 1 (bottom) and SuppMat for visual examples.
User Studies We complement the comparison to State-of-
Art models by completing various user studies (Fig 6). Non-
expert users are presented with side-by-side generations
from our model and each of the object compositing base-
lines, and are asked to choose their preferred image based
on ‘most realistic interaction’ (in cases of mask overlap-
ping) and ‘best image quality’. Due to our model’s ability to
composite multiple interacting or non-interacting objects in
a natural way, users prefer our model with up to 66.7% pref-
erence in terms of image quality and up to 97.1% preference
for realistic interactions, via majority consensus. We also
assess alignment to each individual input modality by com-
paring our compositing model to Emu2Gen [42]. Emu2Gen
is provided with the same inputs (Fig 5), presented as a mul-
timodal input interlacing text, object images, object-specific
bounding boxes and background. Background image is pro-
vided by adding ‘in < IBG >’ to the multimodal input,
as showcased in [42]. In this comparison, users prefer our
alignment across all modalities. See SuppMat for details.

Figure 6. User Studies. Top: Percentage of users prefering our
method or each baseline [7, 40, 43, 48, 50] on ‘image quality’
and ‘realistic interaction’. Bottom: Percentage of users prefering
our method or Emu2Gen [42] in terms of text, layout, objects and
background alignment. All results are via majority consensus.

Figure 7. Visualization of the effect of Joint Training for Com-
positing and Customization tasks. When training solely on object
compositing, balancing text and image alignment becomes signif-
icantly more complex. In this setup, the ablation model signif-
icantly drops identity preservation when inference is also guided
with text. Our final model achieves better visual-language balance.

4.2. Ablation Study
Table 3 displays identity and text fidelity metrics for vari-
ous ablations of our model. (i-ii) As seen in Fig 8, adding
attention-based losses helps prevent semantic and visual in-
formation leakage between objects, improving both identity
preservation and text alignment, as well as the overall image
quality. (iii) When training solely for object compositing,
the model must learn to add new objects to a scene, repose
them according to actions described in text input, complete
the scene by adhering to the same text, and harmonize and
relight the image to make everything look seamless while
preserving object identity. By introducing customization as
an auxiliary task and alternating between both tasks during



Figure 8. Visualization of the effect of Lc, Ls. Without attention-
based losses, our model merges objects with similar semantics or
visual traits. Cross-attention loss Lc improves identity separa-
tion, but some leakage remains (e.g., cat ears on dog and teapot).
Adding self-attention loss Ls further reduces this leakage.

Method DINO↑ CLIP-I↑ CLIP-Tloc↑ CLIP-Tgl↑
MultiComp-action

Ours 0.540 0.745 0.286 0.285
w/o self loss 0.538 0.744 0.283 0.284
w/o attn loss 0.534 0.739 0.270 0.274
w/o customiz. 0.449 0.705 0.295 0.298
w/o multi-view 0.535 0.751 0.268 0.273
w/o inf. mask 0.448 0.712 0.283 0.280

MultiComp-positional

Ours 0.585 0.773 0.292 0.294
w/o self loss 0.584 0.770 0.289 0.291
w/o attn loss 0.581 0.770 0.281 0.285
w/o customiz. 0.474 0.734 0.298 0.298
w/o multi-view 0.591 0.780 0.280 0.283
w/o inf. mask 0.436 0.714 0.286 0.290

Table 3. Quantitative comparison of text/image alignment to dif-
ferent ablations of our compositing model. For better analysis we
distinguish between action and positional subsets of MultiComp
set, based on objects relationship in text description. We com-
pare our full model to different versions obtained without (i) self-
attention loss Ls; (ii) self and cross-attention losses (Lc,Ls); (iii)
joint training for compositing and customization; (iv) multi-view
data (i.e. video, manually collected set); (v) inference masking.

training, the model can sometimes relieve the inpainting as-
pect of compositing, focusing only on balancing text align-
ment and identity preservation. As in Fig 7, in the absence
of the customization task, the model struggles to balance
text and image preservation, and the objects become irrec-
ognizable. (iv) Without multi-view data, even if visual and
geometrical transformations are applied to the object im-
ages, the model lacks the ability to repose them to match the
actions described in the text. This results in a ‘copy-paste’
behavior where objects are minimally transformed (high
CLIP-I, DINO), preserving identity but leading to highly
unnatural results and low text alignment (CLIP-Tgl,loc). (v)
The masking step at inference ensures object locations are
accurately aligned with input masks, and further disentan-
gles identities. Therefore, removing it significantly lowers
DINO/CLIP-I scores due to displaced objects and identity
leakage, while CLIP-Tlog,gl remain mostly stable.

Figure 9. Multitwine Applications. Top: Multi-Object Composit-
ing of Three Objects. Bottom: Subject-Driven Inpainting.

4.3. Applications
Although not explicitly trained for them, our model exhibits
some emerging capabilities. See SuppMat for more.

Multi-Object Generation As shown in Fig 9 (top), our
model is able to perform multi-object compositing with
more than two objects. By learning one-to-one object inter-
actions, it develops a strong prior that allows it to generalize
to compositing multiple objects simultaneously.

Subject-Driven Inpainting Our joint training enables
the model to learn key subtasks like background synthesis,
blending, harmonization, and reposing. As shown in Fig
9 (bottom), these skills apply to subject-driven inpainting,
where the model uses text and layout guidance to seam-
lessly complete scenes, generating and integrating objects
while maintaining natural coherence with the given visuals.

4.4. Limitations
Although our model can handle two or more objects, the
pipeline is not designed for an unlimited number. As more
objects are added, the multimodal embedding grows, which
could lead to scalability issues. A potential future improve-
ment could involve feeding each object embedding sepa-
rately, impacting only corresponding attention maps. Ad-
ditionally, we base our model on SD1.5 due to compute
limitation. Overall harmonization and composition qual-
ity could be further improved with stronger diffusion base
model such as SDXL [30] or SD3 [11].

5. Conclusion
In this paper, we introduce the first generative model ca-
pable of simultaneously compositing multiple objects in
a natural and realistic manner, guided by text and lay-
out. We demonstrate how joint training on object com-
positing and subject-driven generation improves model per-
formance, achieving state-of-the-art results in both tasks.
This multi-object, dual training approach enhances flexibil-
ity, enabling applications like subject-driven inpainting and
more realistic object interactions. We hope this work in-
spires further research into more controllable and effective
object compositing techniques.
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Multitwine: Multi-Object Compositing with Text and Layout Control

Supplementary Material

1. Training and Testing Data

In this section, we provide additional information about the
training data generation pipeline proposed in Main Paper
Section 3.4 and MultiComp, the multi-object compositing
test set introduced in Main Paper Section 4.

1.1. Training Data
As detailed in Main Paper Section 3.4, our paired training
data — comprising ground truth images with multiple ob-
jects, descriptive captions with grounding information, seg-
mented images of two objects, and corresponding object-
specific bounding boxes — is collected from complemen-
tary sources: Video Data, In-the-Wild Images, and Manu-
ally Collected Data. Below, we expand on how paired data
is extracted from each source.
Video Data Fig 1 illustrates the process for extracting
paired training data from videos in [36, 37]. A ground-truth
frame containing an annotated relationship between two ob-
jects is randomly selected. Two additional frames, each
showing one of the interacting objects, are extracted from
the same video, ensuring a similarity between the views
of each object (DINO score MSE ≥ 0.8) [27]. A caption
describing the relationship is automatically generated by
feeding the ground-truth image and annotated relation into
LLaVA v1.6 (34B) [24] with the prompt: “Can you provide
a grammatically correct one-line caption for the relation
<object A> <relation> <object B> in the image?”. The
segmented objects are then extracted using an off-the-shelf
semantic segmentation model [31].
Image Data We propose two automated approaches for ob-
taining paired data from in-the-wild images.

Top-down approach As illustrated in Fig 2, this ap-
proach generates paired training data from a single image
using a systematic process. First, a commercial subject se-
lection tool identifies the main objects in the scene. A se-
mantic segmentation model [31] then segments the selected
region to determine the number of objects present. If multi-
ple objects are detected, two are randomly selected as com-
posited objects. Their outlines are highlighted on the im-
age using distinct colors (e.g., orange and blue) and passed
to ViP-LLaVA (13B) [3] for caption generation through
two sequential prompts. In the first step, entities within
each highlighted outline are identified with a question like:
“Please follow the sentence pattern of the example to list
the entities within each rectangle. Example: ‘orange: ba-
nana; blue: apple’”. This produces responses such as “or-
ange: teddy bear; blue: girl”. Using these entity labels, the
second step generates a descriptive caption with a prompt

Figure 1. Training Data Generation from Video Data. Paired train-
ing data is obtained from video object relation datasets [36, 37] by
extracting three frames with corresponding annotations and lever-
aging Vision-Language Models [24].

Figure 2. Training Data Generation from Image Data via Top-
Down Approach. Paired training data is derived from in-the-wild
images by leveraging a Vision-Language Model [3] and a Seman-
tic Segmentator [31].

like: “Can you provide a one-line caption including the in-
teraction between ‘teddy bear within the orange rectangle’
and ‘girl within the blue rectangle’ in the image by using
these exact entity names?”. The resulting caption, e.g., “A
young girl within the blue rectangle is holding a large teddy
bear within the orange rectangle”, is refined by removing
the grounding phrases “within the orange/blue rectangle”
after using them for correlating object images with text to-
kens. This method ensures accurate grounding information,
even when both entities are labeled the same, resulting in
the final caption: “A young girl is holding a large teddy
bear”.

Bottom-up approach This approach (Fig 3) leverages
a grounding model like GroundingDINO [25] to process
paired ground truth images and captions. The model ex-
tracts bounding boxes that link specific words in the caption
to objects in the image. Duplicates, background elements,
and undesired objects (e.g., overly large or small objects,
or those with low confidence scores) are removed, leaving
a set of object candidates with corresponding grounding in-
formation. Two of those objects are then randomly selected,
and an off-the-shelf semantic segmentation model [31] is



Figure 3. Training Data Generation from Image Data via Bottom-
Up Approach. Paired training data is extracted from in-the-wild
images with a paired caption by leveraging a Grounding Model
[25] and a Semantic Segmentator [31].

Figure 4. Training Data Generation from Manually Collected
Data. Paired training data is obtained from a collected dataset
containing object images, human images, and images of humans
interacting with objects. We leverage a Vision-Language Model
[3] and a Semantic Segmentator [31] to extract segmented objects
and corresponding caption with grounding information.

used to extract them. This results in two segmented objects
along with their associated grounding details from the orig-
inal caption.
Manually Collected Data We manually collect and anno-
tate images featuring objects, humans, and human-object
interactions. For captioning with grounding information,
we use ViP-LLaVA (13B) [3], following the exact same
procedure as the top-down approach described above. Ad-
ditionally, a semantic segmentation model [31] is employed
to segment entities in images containing either a single ob-
ject or a human. Fig 4 illustrates this approach.

2. Inference Data

Our collected MultiComp set consists of 119 paired data
entries, each containing: (i) a background image, (ii) two
object images, (iii) object-specific bounding boxes, (iv)
an inpainting bounding box encompassing the previous
ones, and (v) a descriptive caption with grounding informa-

tion. Background images are sourced from Pixabay [29],
while objects are from Pixabay [29], MultiBench [23], and
DreamBooth [34]. Bounding boxes and captions are manu-
ally crafted. For evaluation, we perform 5 iterations of each
model on the entire set, resulting in 595 generated images.

Out of these, 395 images contain overlapping bound-
ing boxes for the two objects (MultiComp-overlap), while
200 show non-overlapping bounding boxes (MultiComp-
nonoverlap). We evaluate these subgroups separately due
to their differing levels of difficulty. While simultaneous
compositing offers benefits like cohesive harmonization in
both cases, it is especially effective in the overlapping cases,
where it allows for simultaneous object reposing and the
generation of additional elements needed for the scene.

When textual input is provided, we further categorize the
set into two subgroups based on caption types: MultiComp-
action and MultiComp-positional. The MultiComp-action
subset contains 375 images generated from action-based
captions (e.g., running after, playing with, holding), while
the MultiComp-positional subset includes 220 images gen-
erated from captions describing positional relations (e.g.,
next to, behind, in front). This distinction allows us to sepa-
rately evaluate cases where reposing objects is often neces-
sary (MultiComp-action) versus those primarily describing
object layout (MultiComp-positional).

3. Comparison to Existing Methods
We provide additional visualizations comparing our model
to existing generative object compositing and multi-entity
subject-driven generation models in Sections 3.1 and 3.2.
Further details on user studies can be found in Section 3.3.

3.1. Comparison to Generative Object Compositing
Methods

We visually compare our simultaneous multi-object com-
positing method to sequentially adding two objects using
State-of-the-Art Generative Compositing Methods [7, 40,
43, 48, 50] in Fig 5.

3.2. Comparison to Subject-Driven Generation
Methods

We visually compare two-entity subject-driven generation
using our method and existing methods with available code
(BLIP-Diffusion [22], KOSMOS-G [28] and Emu2Gen
[42]) in Fig 6.

3.3. User Studies
We conduct six user studies to evaluate our multi-object
compositing model against other generative object com-
positing models [7, 40, 43, 48, 50] and Emu2Gen [42]. In
each study, non-expert users are shown two side-by-side im-
ages, one generated by our model and the other by a base-
line, presented in random order. Users are asked to choose



the preferred image based on a specific criterion. The entire
MultiComp set is used for each experiment, except for the
‘most realistic interaction’ evaluation, where only images
from MultiComp-overlap are considered, as this subset best
evaluates the task. At least five users rate each image pair,
and the results are aggregated via majority consensus. Vi-
sual examples of each experiment and the specific questions
posed to the users can be found in Figs 7, 8, 9, 10, 11, and
12.

4. Ablation Study

Fig 13 shows visual examples of images generated by each
ablation of our model (as detailed in Main Paper Table 3) for
the same set of inputs. Without multi-view data (i.e., video
data, manually collected data), the model struggles to prop-
erly repose and combine objects to align with the textual
description. In the absence of joint training for compositing
and customization, the model fails to balance textual and vi-
sual inputs, resulting in object identity loss when reposing.
Without cross-attention and/or self-attention losses, disen-
tangling object identities becomes difficult, leading to tex-
ture and color leakage between objects (e.g. bow color, cat
ear on ball). Lastly, omitting the masking step during in-
ference leads to a degradation in alignment with the input
layout and fails to fully mitigate identity leakage.

5. Applications

5.1. Model Versatility

We demonstrated in Main Paper Fig 9 how, by leveraging
the advantages of our joint compositing and customization
training, our model can be used for subject-driven inpaint-
ing. Additionally, Fig 14 illustrates how the same model
can be applied to a broad range of tasks:

Layout-Driven Inpainting This task takes as input a de-
scriptive caption, a background image, and a layout specify-
ing an inpainting region along with object-specific bound-
ing boxes for objects referenced in the caption. The model
inpaints the selected region of the background image, ensur-
ing alignment with the textual description while positioning
objects according to the provided layout.

Multi-Object Compositing In addition to the inputs re-
quired for layout-driven inpainting, this task includes an im-
age for each object corresponding to the provided bounding
boxes. The model maintains the identity of these objects
while enabling reposing and view synthesis, producing a
cohesive composited image.

Layout-Driven Generation In this case, no background
image is provided. This task uses only a descriptive caption
and bounding boxes specifying object positions as inputs.
The model generates a full image that aligns with the cap-
tion while placing objects in the specified locations.

Multi-Entity Subject-Driven Generation Similar to
layout-driven generation, this task uses a text caption and
bounding boxes as inputs but also includes an image for
each object. The model generates a complete scene that
aligns with the text, places objects in their specified loca-
tions, and preserves their unique identities.

5.2. Multi-Object Compositing and Multi-Entity
Subject-Driven Generation

Fig 15 show how the same model can be used for both
multi-object compositing and multi-entity subject-driven
generation, guided by a variable number of provided ob-
jects.

5.3. Robust Object Compositing

During training, an off-the-shelf segmentation model (Enti-
tySeg [31]) is used to extract single objects from images, a
process that introduces segmentation errors and occlusions.
These imperfections during training strengthen our model’s
ability to handle real-world scenarios at inference. As a
result, Multitwine demonstrates robust compositing capa-
bilities, seamlessly adapting object attributes to produce
natural-looking results even in challenging scenarios. Fig
16 illustrates several examples of these capabilities, includ-
ing: managing the transparency of a glass of milk, handling
incomplete objects and inaccurate segmentations, and re-
harmonizing subjects from different domains (i.e. blending
two cats extracted from a color image and a black-and-white
image).

5.4. Robust Layout Alignment

Multitwine incorporates a layout cue as input, allowing
users to specify the precise location and shape of each com-
posited object. The model is trained to adapt object dimen-
sions to fit the provided input masks, offering users greater
control over the final output, as demonstrated in Fig 17.
However, this strict bounding box guidance can sometimes
lead to slight deformations in the objects, as commonly seen
with generative compositing models. If deformations are
undesirable, training with perturbed masks could mitigate
them, though at the cost of some layout control.

5.5. Attribute Editing through Text

As seen in Fig 18, our model is designed to accommodate
complex, multi-word grounded descriptions for each com-
posited object, effectively capturing and reflecting their nu-
ances in the final image. This capability ensures greater
fidelity and detail in the generated results, aligning closely
with the provided descriptions. In this case, multimodal em-
beddings are created by concatenating visual information
after the last corresponding text token, while cross-attention
masking and inference operate on all grounded text tokens.



6. Limitations and Failed Cases
Although simultaneously compositing several objects is
possible with Multitwine, our model is not specifically de-
signed for handling an unlimited number of objects. Fig
19 depicts a case where our model fails to composite six
objects in a complex scene. When attempting to compos-
ite many objects, the model struggles to naturally integrate
them all, resulting in missing objects, weaker harmoniza-
tion, and reduced text-image alignment.



Figure 5. Visual comparison of our Multi-Object Compositing Method and State-of-the-Art Generative Object Compositing Methods
[7, 40, 43, 48, 50].



Figure 6. Visual comparison of our Customization Method and State-of-the-Art Subject-Driven Generation Methods [22, 28, 42].



Figure 7. User Study on ‘Compositing Quality’. Screenshot of
user study presented to participants for evaluating the image qual-
ity of our multi-object compositing method against generative ob-
ject compositing baselines [7, 40, 43, 48, 50].

Figure 8. User Study on ‘Realistic Interaction’. Screenshot of user
study presented to participants for evaluating the realism of inter-
actions generated by our multi-object compositing method against
generative object compositing baselines [7, 40, 43, 48, 50].

Figure 9. User Study on ‘Background Alignment’. Screenshot of
user study presented to participants for evaluating the alignment
with background image of our multi-object compositing method
against Emu2Gen [42].

Figure 10. User Study on ‘Text Alignment’. Screenshot of user
study presented to participants for evaluating the text alignment of
our multi-object compositing method against Emu2Gen [42].

Figure 11. User Study on ‘Objects Alignment’. Screenshot of
user study presented to participants for evaluating the alignment
with input object images of our multi-object compositing method
against Emu2Gen [42].

Figure 12. User Study on ‘Layout Alignment’. Screenshot of user
study presented to participants for evaluating the layout alignment
of our multi-object compositing method against Emu2Gen [42].



Figure 13. Visual examples for each ablation of the model. From left to right: (i) inputs (background, layout, objects and text), (ii) no
self-attention loss, (iii) no self-attention or cross-attention loss, (iv) no joint training for compositing and customization, (v) no multi-view
data (i.e. video data, manually collected data), (vi) no inference masking step, (vii) final model.

Figure 14. Visual examples for different applications of our model. Our model can operate on different modes such as: (i) layout-driven
inpainting, (ii) multi-object compositing, (iii) layout-driven generation, (iv) multi-entity subject-driven generation.



Figure 15. Visual Examples for Multi-Object Compositing (left) and Multi-Entity Subject-Driven Generation (right), using a variable
number of grounding objects. First Row: One Object; Second Row: Two Objects; Third Row: Three Objects; Forth Row: Four Objects.



Figure 16. Visual Examples for Multi-Object Compositing in challenging scenarios, including: (left) harmonization, (middle) incomplete
objects, and (right) imperfect segmentation and compositing of objects with different style (i.e. color, black and white).

Figure 17. Visual Examples for Multi-Object Compositing via different layout inputs.

Figure 18. Visual Examples for Multi-Object Compositing using different grounded captions. The text caption can be used to edit poses
and attributes of composited objects.

Figure 19. Visual example of a failed case from our model, depicting its limitation for compositing a high number of objects in a complex
scenario.
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