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Figure 1. Style transfer results using NeAT, trained on BBST-4M. Zoomed in
areas are shown in the middle columns.

Abstract. Style transfer is the task of reproducing the semantic con-
tents of a source image in the artistic style of a second target image. In
this paper, we present NeAT, a new state-of-the art feed-forward style
transfer method. We re-formulate feed-forward style transfer as image
editing, rather than image generation, resulting in a model which im-
proves over the state-of-the-art in both preserving the source content
and matching the target style. One component of our model’s success
is identifying and fixing "style halos", a commonly occurring artefact
across many style transfer techniques. In addition to training and test-
ing on standard datasets, we introduce the BBST-4M dataset, a new,
large scale, high resolution dataset of 4M images. As a component of
curating this data, we present a novel model able to classify if an image
is stylistic. We use BBST-4M to improve and measure the generalization
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of NeAT across a huge variety of styles. Not only does NeAT offer state-
of-the-art quality and generalization, it is designed and trained for fast
inference at high resolution.

1 Introduction

Since the introduction of techniques for neural style transfer (NST) by Gatys et
al. [11], there has been an explosion of research driving style transfer with deep
neural networks. Initially performed via an optimization based approach, interest
has gradually shifted to parametric and feed-forward approaches. The primary
drawback of optimization approaches are their lengthy run-times, limiting their
practical use. The research field has thus focused on advancing the quality and
style diversity of feed-forward approaches to match or exceed that of optimization
models, whilst maintaining practical run-times. First, by adapting models to
contain stylization capabilities for multiple styles [5,14], and eventually arbitrary
styles [13,18].

We set out to achieve 3 main objectives: A) state-of-the-art generality to
both modern and classical styles; B) efficient scaling to high resolution images;
and C) state-of-the-art visual stylization quality. We achieve all three of these
objectives at the same time. Our contributions are:
1. Reformulation of NST to modify pixels in a content image rather than to
generate a brand new image (contrasting with prior work). This achieves: Better
detail preservation from the content image, measured in Table 1 and via our user
study, and visualized in Fig 7.
2. A new Sobel-based feature-complexity guided discriminator loss for a better
matched stylization learning signal. This achieves: Solving a long-standing issue
- style halos present in prior NST. We are first to do so (Figs. 4,5).
3. Big Beautiful Style Transfer (BBST-4M) - a novel dataset of 4 million very
high resolution images for the NST community. WikiArt and MSCoco (∼80k
images) typically used in NST, limit techniques to low resolution and focus on
traditional fine-art styles. This achieves: High resolution output, and improved
style diversity/quality measured in Sec. 5.3 through a user study comparing
training on WikiArt+MSCoco vs. BBST-4M. Users prefer BBST-4M, especially
for modern styles. We filter the style/content subsets of this dataset with the
assistance of a novel dual-branch ViT [8] and ALADIN [28] model trained to
predict how artistic an image is. We release both this stylistic prediction model,
and the BBST-4M dataset (time-stamped).

2 Related Work

Great stylization quality has been achieved in literature by focusing on the align-
ing the statistics of features extracted by frozen pretrained networks in the final
output image and the target style image [11,13,16,17]. However, as with classical
computer vision techniques, these approaches are limited by human design, and
are likely sub-optimal, in quality and runtime.
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Fig. 2: Basic architecture diagram. The green modules represent the trainable param-
eters. For clarity, the discriminator modules and contrastive projection heads are not
shown. The contrastive loss is computed 1) between the stylized output and the tar-
get style, and 2) between the stylized images only [3] - a group of contrastive losses
anchoring on the same style regardless of content, and a group of contrastive losses
anchoring on the same content regardless of style. We also leverage several common
identity losses between the stylized image and the respective style/content images from
the datasets - computed as a Gatys loss [11].

More recent works have started exploring the idea of shifting this design pro-
cess to the actual model via transformations learned through attention mecha-
nisms. SANet [22] introduced a style attentional module to perform style transfer
in a feed-forward approach. Improving on local style information compared to
Avatar-Net [33], they combine global and local style patterns extracted from
different VGG layers, by normalizing the content/style feature maps, and com-
puting attention between them via learnt 1x1 convolutions [37]. PAMA [20]
introduces iterative alignment of the content with the target style across mul-
tiple attention modules, improving quality and reducing inconsistencies of style
across similar areas in the content image.

ContraAST [3] expands SANet by injecting information about the entire
distribution of training data via domain-level adversarial losses. This is imple-
mented by a discriminator acting on the stylized image, aiming to classify these
outputs as fakes and images from the style dataset as reals. ContraAST also in-
troduces contrastive losses between the stylized images. One encourages several
stylized images with the same target style to stylistically match. Another encour-
ages several stylizations of the same source content image but different styles to
share the same content. These losses shift the burden of designing feature spaces
and comparing them from human design into the learning process.

CAST [40] improves on the contrastive loss from ContraAST by including
ground truth images in the contrastive pairs, expanding the loss to compare the
generated images to images in the dataset.

This work also leverages several important ideas from the style transfer lit-
erature. In image translation literature, Swapping Auto-encoders [23] introduce
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a powerful discriminator based on patch co-occurrence. While it was originally
used for photo-realistic style transfer, we find it equally powerful for artistic styl-
ization. Another important concept is increasing the effective batch size used in
contrastive loss; as it has been shown that the value of contrastive loss scales well
with increasing numbers of negative examples [4]. However, in non-trivial models
optimally high batch sizes are difficult to fit into VRAM. Logit accumulation,
introduced in ALADIN [28] enables compatibility of the gradient accumulation
technique to models trained using contrastive loss. This works by iteratively ac-
cumulating the model’s output logits without model gradients, performing the
large batch-wise contrastive loss, then iteratively propagating the sample-wise
gradients back through the model in sub-batches, this time using gradients from
re-forwarding the respective sub-batch images through the model. Other similar
accumulation approaches have been used in works such as Listwise loss [25], and
ArtFlow [2].

Recently, diffusion based generative models [9, 24, 26] have attracted much
attention in the research community. These models exhibit impressive quality in
novel image generation. Through extensions such as textual inversion [10] and
Dreambooth [27] existing models can be finetuned to generate specific concepts
or styles. SDEdit [21] offers a mechanism to alter an existing image, although
without much finegrained control over content preservation. Prompt2Prompt
[12] offers a mechanism to improve content preservation while editing, but has
unpredictable failure cases and works best on generated images rather than real
photos. Imagic [15], and Unitune [35], finetune the diffusion model for editing a
specific image, making them extremely time and compute intensive. While these
methods are adjacent to the field of style transfer, and show great promise, we are
not aware of diffusion-based methods which simultaneously offers the content-
preservation, exemplar based style control, and feed forward inference speed of
NST methods.

3 BBST-4M Dataset

We compile a large scale dataset of content and style images, using images from
Behance.net for the style subset, and images from Flickr for the content subset.
We filter based on the criteria that images must be high resolution (at least
1024px on the smallest side), and they must be stylistic for the style subset, and
not stylistic for the content subset.

To filter based on the stylistic properties of the image, we first build a model
to predict if an image is stylistic. We use ViT [8] for a content feature branch,
and ALADIN-ViT [29] for a style feature branch. We merge these two pre-
trained branches with a small MLP for a final score. The model was trained
iteratively, human-in-the-loop, on data from the StyleBabel dataset [29]. We
manually annotated images as being stylistic or not, with assistance from the
model to help guide the process, with iterative re-training of the model with each
pass of further dataset expansion through annotation. Our stylistic prediction
model achieves 96% accuracy in determining if an image is artistic or not.
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Our criteria to judge if an image is stylistic or not is subjective, but our
general rule was that if it made sense to use an image as a target style, it was
deemed stylistic. Images such as ordinary photographs or interface screenshots
would be labelled as negative examples; while images such as oil paintings or
digital art would be positive examples.

We used this stylistic detection model to filter out stylistic images from the
Flickr data, and filter out non-stylistic images from the Behance data. This is
a similar post-processing step to the aesthetic predictor model used to curate
LAION-5B [31] into LAION-aesthetic, except here we focus on how stylistic an
image is, or is not. The largest source of content/style separation comes from the
data sources - with content images from Flickr photographs, and style images
from Behance artworks. The final dataset size is 2.2 million stylistic images from
Behance, and 2 million content images from Flickr.

Fig. 3: Visualization of the content colour bleeding problem, in content priors use

4 Design decisions

Works in the hypernetworks literature [1, 30] find that reformulating a model’s
task as the modification of the target domain can be more effective than gener-
ating completely new values. In the hypernetworks, this is done by generating
weight deltas, to modify existing trained weights of a target model. This idea of
generating deltas can similarly be applied to other tasks, such as style transfer.
In our work, we propose this by designing our model to generate RGB deltas,
over the existing content prior image. Generating a completely new image is
unnecessary, as we already know what the structure of the image should be.
For neural stylization, we are only interested in modifying the existing content
image. So far, content preservation has been an area of focus for balancing de-
sign decisions in previous literature, but we propose this approach to alleviate
this problem, as the content image already has all the needed information. An
ablation visualizing the benefit of our deltas-based approach over priors can be
seen in Fig 7, and calculated in Table 1.

There are nevertheless some challenges to overcome with this approach. First,
a balance must be found in deciding how much information from the content
image should be propagated. A stylized image should preserve the content of
the reference image, but not necessarily retain all the fine details. For example,
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a stylized landscape image should rarely replicate details as fine as grass blades.
We therefore first apply some light gaussian blurring on the content image, and
apply bilateral filtering to further simplify the source image while preserving
sharp edges. Finally, we first apply a weighting (0.5) to the content prior, to
force the model to not rely purely on all the content prior’s details (similar
to how an artist traces over a faded version of the reference image). During
inference, the blur strength can be adjusted/disabled, to allow slightly more or
less original details to come through into the final image.

The second issue is colour information from the content image bleeding into
the stylized image. We are only interested in the structure information, not the
colours. There are several ways this issue can be mitigated, such as only using
grayscale content priors, or using only priors for structure channels in a different
colour space such as HSL or OKLAB. Still, we find the best approach to be to
re-colour the content prior with the style image colours. We adjust the mean
and covariance, as per the work in Artistic Radiance Fields [38]. Figure 3 shows
a visualization of the colour bleed from the content image when a content image
is used as a prior, and how our pre-recolouring pipeline remedies it.

4.1 Architecture and losses

Most inspired by ContraAST and PAMA, we first extract image features from
the ground truth images using a pre-trained VGG [34] model. Next, we use an
attention based mechanism to induce the style transfer in feature space. We
use 4 PAMA [20] blocks, between VGG features of style and content images.
Finally, we decode these features using a decoder module. We use a domain-level
adversarial loss [3] to support realism in the generated images, and identity losses
to ensure strong information propagation. During the stylization process, we use
contrastive losses amongst the generated stylized images to ensure consistency
between the style and content. We further perform contrastive losses between
the stylized images and the ground truth style images [40]. We use two crops
of ground truth style for this, to raise the number of comparisons made to the
style image whose style we replicate.

Finally, we use a patch co-occurrence discriminator [23] to provide an addi-
tional learning signal for style, via a patch based comparison. This further helps
with small details in textures such as paint strokes, highly visible when generat-
ing high resolution images. This improves local style information, in addition to
the global style information already supported by the other losses. We use a cus-
tom implementation of a patch co-occurrence discriminator, where we perform
a more principled sampling of patches via edge maps, to solve style halos.

4.2 Style Halos

An issue we commonly observe in literature is the appearance of halos in the
generated style images. Visualized in Fig 5, these are outlines around objects
which reduce the overall quality of the image. We notice that they mostly oc-
cur in low frequency areas adjacent to high frequency areas. The style halos
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Fig. 4: A visualization of the patch co-occurrence loss, specifically showing the Sobel
guided selection process (Sec Style Halos). Patches are randomly selected from both
the stylized image, and the style image. Sobel edge maps of the content image and
style image are used to compute average intensity scores for all patches, which are then
sorted by this intensity score. Two patch co-occurrence losses are computed separately,
for the simple patches, and the complex patches.

Fig. 5: Visualization of the style halos intermittently present in many models. Style
halos can be seen in the top row mostly around the two towers, in the sky. In the
bottom row, they can be seen around the edges of the squirrel.

themselves contain low frequency style textures, which are appropriate for a low
frequency area. The problem, therefore, is not with the areas inside the halos,
but rather in the remaining low frequency region, further away from the edge.
While previous work can sufficiently stylize transitions from high-frequency to
low-frequency regions, they fail in entirely low-frequency regions. When relative
edge information is not present locally, there is no guidance for how complex the
texture/style needs to be. As a result, style complexity increases in low-frequency
areas further from the boundaries, creating these halo-like artifacts.

We propose a solution to this problem based on an informed selection of
patches used in a patch co-occurrence discriminator, to provide a localized, non-
global style signal. The vanilla discriminator selects 8 patches at random from
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the style image, and 8 at random from the generated image. Informed by our
observations regarding style halos, we improve this by splitting the loss into two
separate patch co-occurrence discriminators, one acting on low frequency areas,
and one acting on high frequency areas (Figure 4).

We use Sobel edge maps to determine regions’ frequency intensities for ran-
domly sampled patches from style and content images. We then sample these
regions from the style and stylized images and sort them by average intensity
respective to their Sobel versions. The high average intensity patches are used
in the high-frequency discriminator, and the low average intensity patches are
used in the low-frequency discriminator. By forcing the discriminators to focus
on high/low complexity patches separately, we provide a local signal that low-
frequency regions of the content image should remain lower frequency relative
to the rest of the image when stylized. Thus, low-frequency regions far from
boundaries are not stylized with overly complex texture for lack of a local rela-
tive signal, alleviating the halo artifacts. The two losses are weighted by λps for
the simple patches’ loss and λpc for the complex patches’ loss.

Eq 1 details Ls, the style loss computed amongst style and stylized image
features, where ϕi represents VGG-19 layer index, with µ and σ representing
mean and standard deviation of extracted feature maps. Is represents style image
from the style dataset S, Ic represents content image from the content dataset
C, and Isc represents the final stylized image, after applying the generated RGB
deltas over the original Ic.

Ls :=

L∑
i=1

∥µ (ϕi (Isc))− µ (ϕi (Is))∥2 + ∥σ (ϕi (Isc))− σ (ϕi (Is))∥2 (1)

Eq 2 represents the domain-level adversarial loss, as per [3], learning to dis-
criminate between generated stylized images, and real artworks. Here, a discrim-
inator D operates over the stylized image, following encoder E, transformation
T , and decoder D modules.

Ladv := E
Is∼S

[log (D (Is))] + E
Ic∼C,Is∼S

[log (1−D (D (T (E (Ic) , E (Is)))))] (2)

Eq 3 details standard perceptual loss, and Eq 4 details an identity loss, to
preserve the same image when the content and style images are the same.

Lc :=
∥∥ϕconv4_2 (Isc)− ϕconv4_2 (Ic)

∥∥
2

(3)

Lidentity := λidentity 1 (∥Icc − Ic∥2 + ∥Iss − Is∥2) + λidentity 2

∑L
i=1 (∥ϕi (Icc)− ϕi (Ic)∥2 + ∥ϕi (Iss)− ϕi (Is)∥2) (4)

Eqs 5 and 6 show contrastive losses as detailed in Sec 4.1, similar to [3]
and [40], where h is a projection head ls and lc are style/content embedding
extraction respectively, and τ is the temperature hyper-parameter.

Ls− contra := − log

(
exp(ls(sicj)T ls(sicx)/τ)

exp(ls(sicj)T ls(sicx)/τ)+
∑

exp(ls(sicj)T ls(smcn)/τ)

)
(5)

Lc− contra := − log

(
exp(lc(sicj)T lc(sycj)/τ)

exp(lc(sicj)T lc(sycj)/τ)+
∑

exp(lc(sicj)T lc(smcn)/τ)

)
(6)
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The Lpatch term defined in Eq 7 is our patch discriminator (Dpatch loss,
guided by Sobel Maps (SM).

Lpatch = E
Is∼S

[− log(Dpatch (crop(Isc, SMsc), crops(Is, SMs)))] (7)

The final objective is shown below, with SM, sc, s, S, D, C, and I representing
Sobel Maps, stylized image, style image, style dataset, discriminator, cropping
function, and output image. We would like to stress that these loss terms have
been explored in previous literature [3,40]. Please refer to these published works
for further ablations. We newly introduce the Sobel-guided patch co-occurrence
discriminator loss, which we show in Figure 5 to solve the style halos artefacts.

Lfinal := λ1Ls + λ2Ladv + λ3Lc + λ4Lidentity + λ5Ls-contra ...

+λ6Lc-contra + λ7Lpatch_simple + λ8Lpatch_complex (8)

Lpatch = E
Is∼S

[− log(Dpatch (C(Isc, SMsc), C(Is, SMs)))] (9)

5 Experiments

We can perform interpolation in the style space, by interpolating between the
feature maps fed through the decoder. Fig 6 visualizes interpolation between
the feature map of a content image, and the feature map of the same content
image, stylized by the style image shown. For full interpolation, we additionally
interpolate the content image prior due to our pre-processing pipeline. We use
an alpha α value to signify the interpolation strength between these.

Fig. 6: Interpolation between the original image and its stylized variant, by interpo-
lating the features input to the decoder.

Interestingly, we can amplify the stylization strength by increasing α (inter-
polation strength) beyond 1, thus further boosting the effect of the stylization. A
couple such samples, denoted in the figure as α = 1.25 and α = 1.5 show how the
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stylized image’s style even more strongly resembles that of the style image. Yet,
structural details in the image are still maintained - such as the fence posts and
the birds on the wire. Similar to the content prior’s blur parameters, changing
the alpha value during inference can be used by an artist as a tool to control the
stylization process further.

Fig. 7: Ablation showing detail gain from use of prior deltas. Quantified in Table 1.

5.1 Training and evaluation

The strengths of the content prior blurs can be varied, but for training, we
settle on a balanced amount of 7px blurring, followed by bilateral filtering with
filter size 25, and a sigma value of 100. During early tests, we experimented with
unbalanced averaging of the losses from the two sobel guided patch co-occurrence
discriminators. Based on the idea that high frequency information requires more
work to learn correctly, we provide more of the loss budget to the high frequency
patches, weighing them at 0.75 (λpc), versus 0.25 (λps) for the low frequency
patches. The training time for NeAT is roughly 3 days on an A100.

We form 750 test images from 15 content images and 50 style images sam-
pled from publicly available NST literature test sets, unseen during training. We
evaluate four aspects of our model’s generated images compared to literature,
in automated metrics: (1) colour consistency in regards to the style image, (2)
content structure preservation in regards to the content image, (3) style consis-
tency compared to the style image, (4) inference run-time of the model to run
the style transfer, end-to-end.

We measure colour consistency using the Chamfer distance. We use a version
of this normalized by the number of pixels in the image, such that the score
is independent of the image resolution. We use LPIPS [39] to measure content
preservation, and we calculate the average inference run-time, averaged over our
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test set. To measure style consistency between the style and stylized images,
we use the SIFID metric introduced in SinGAN [32]. This metric measures FID
score, but only amongst individual images. SIFID is used in previous works such
as Swapping Autoencoders [23] for measuring photorealistic style transfer - we
use it for measuring artistic style transfer. Results are shown in Tables 1 and 2.

We additionally measure structure similarity using SSIM, and style similar-
ity using Gram. Our method scores favourably against baselines. We note that
StyTr2 is limited to square aspect ratios unlike our method which operates at
arbitrary resolution. We observe that the few baselines which score slightly bet-
ter than our method on content similarity do so only at the cost of significantly
worse style similarity. For example, S2WAT narrowly scores better on LPIPS
but significantly worse on SIFID/Gram values, implying low quality stylization.

We further include results from our model where the prior image blurring is
turned off. This is a control vector that an artist can use for adjusting how many
details from the content image should come through into the final, stylized image.
We also expose these user controls, to control a trade-off between stronger style or
content similarity. Turning the blurring off can further improve the preservation
of details, measured in the table via LPIPS.

Finally, we undertake a user study to measure stylization quality and consis-
tency with the target image.

5.2 User study

We conduct a user study on Amazon Mechanical Turk (AMT), to measure real
life preference between our model, and baseline models. We show users the con-
tent and style image in the middle of the screen, and on either side, a stylized
sample using either our model, or a baseline comparison model. The whole sam-
ple is shown at the top, and a centre crop shown below, to highlight smaller
details in the image - critical when working with high resolution images. The
left/right columns for either models is randomly shuffled. We test our model
against the baselines, across three different experiments: Overall, Content, and
Style. All three use NeAT trained on WikiArt/MSCoco, for a fair comparison
against literature.

The Content experiment asks users to evaluate the semantic structure and
detail preservation between the content and stylized images. The Style experi-
ment asks users to assess the similarity of artistic style between the output and
target style, irrespective of content. The Overall experiment asks users to eval-
uate both criteria simultaneously to gauge the overall combined quality of the
style transfer.

We randomly sub-sample 200 stylized pairs from our test set for each exper-
iment. We ask 5 different workers to pick their preference for each pair, and we
use consensus voting to determine the overall decision for each pair. In total, 74
total workers contributed to the user study. We collect the results in Table 3. A
value higher than 50% indicates workers preferred our method - we beat all base-
lines, on each of the 3 separate experiments. We underline the closest baseline
to NeAT. The star (*) symbol represents experiments where images were styl-
ized at 512x512 resolution (including for our method, for fairness), either due to



12 D. Ruta et al.

Model LPIPS ↓ SIFID ↓ Chamfer ↓ SSIM ↑ Gram ↓ (×103)
ContraAST [3] 0.643 2.519 51.696 0.419 0.807
PAMA [20] 0.656 2.301 271.630 0.408 1.480
SANet [22] 0.684 2.837 58.297 0.341 0.391
CAST [40] 0.579 1.729 214.075 0.491 0.315
AdaAttn [19] 0.598 3.157 196.391 0.522 1.670
MCCNet [6] 0.646 2.689 393.348 0.467 0.299
ArtFlow [2] 0.346 4.646 656.336 0.673 0.393
NNST [16] 0.626 3.784 2617.187 0.393 0.628
AdaIN [13] 0.666 2.235 204.790 0.330 0.194
NeAT (Ours - WikiArt+MSCoco) 0.655 1.171 78.780 0.464 0.149
−→ no prior blurring 0.596 2.343 96.541 0.513 0.149
NeAT (Ours - BBST-4M) 0.687 1.053 41.742 0.507 0.115
−→ no prior blurring 0.635 1.306 54.227 0.491 0.115
−→ no prior deltas 0.697 1.384 21.505 0.409 0.461
StyTr2 [7] (512x512) 0.636 1.07 20.423 0.453 0.075
S2WAT [36] (512x512) 0.585 2.884 27.294 0.564 1.330
NeAT (Ours - 512x512 WikiArt+MSCoco) 0.587 1.062 16.278 0.482 0.058

Table 1: Quantitative evaluation metrics. We include results with our method for
512px images, for fair comparisons to baselines limited to 512x512 resolution (StyTr2,
S2WAT). Results computed over 512x512 images are presented in italics.

Model 256x256 ↓ 512x512 ↓ 1920x1080 ↓
ContraAST [3] 0.030 0.043 0.150
PAMA [20] 0.035 0.051 0.189
SANet [22] 0.030 0.043 0.163
CAST [40] 0.050 0.055 0.184
AdaAttn [19] 0.053 0.068 0.221
MCCNet [6] 0.040 0.054 0.178
ArtFlow [2] 0.153 0.247 1.178
NNST [16] 17.647 17.266 65.367
AdaIN [13] 0.037 0.0517 0.185
StyTr2 [7] 0.023 0.115 -
S2WAT [36] 0.146 0.146 -
NeAT (Ours) 0.049 0.068 0.226
−→ no prior blurring 0.047 0.058 0.196

Table 2: Timing (seconds/image) of
all methods.

Model Overall Content Style
ContraAST [3] 62.5% 64.0% 66.5%
PAMA [20] 63.5% 71.0% 54.5%
SANet [22] 78.5% 78.0% 64.0%
CAST [40] 60.0% 57.0% 69.0%
AdaAttn [19] 52.5% 54.5% 56.0%
MCCNet [6] 58.5% 55.5% 66.0%
ArtFlow [2] 60.0% 51.5% 72.0%
NNST [16] 84.5% 83.0% 81.5%
AdaIN [13] 72.5% 74.5% 70.0%
StyTr2 [7]* 57.8% 54.4% 57.1%
S2WAT [36]* 62.2% 61.7% 61.7%
Average 64.77% 64.10% 65.3%

Table 3: Preference of our method on AMT,
compared to baselines (61% agreement).
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aspect ratio limitations, or prohibitively high VRAM requirements. Finally, we
qualitatively visualize random stylization results across NeAT and the baselines
in Figure 8.

5.3 Generalization

We use BBST-4M, our newly collected dataset, to improve style transfer quality,
especially across styles not covered in typical style datasets such as WikiArt.
Such datasets are limited in their scope to mainly fine art images. In contrast,
the collection process for the style subset of BBST-4M covered a much larger
variety of styles, as typically found on Behance.net. We train our model using
BBST-4M, and we evaluate via two further user studies how the quality of the
style transfer changes. As before, we first test the BBST-4M variant with the test
set. Second, we separately evaluate how well the model generalizes to non fine art
images, by evaluating using an out of distribution set of style images, respective
to WikiArt. We build this small set of images from a separate data scrape from
Behance, by selecting images that are, on average, far away in ALADIN style
space relative to the images in the WikiArt dataset. These are mainly digital art,
vector art, and other such images not typically seen in such fine art collections.

As before, users on AMT evaluate stylized pairs of the same content and style
image for two variants. The user studies indicate a preference for the BBST-4M
variant at 56.0% over the WikiArt variant. Similarly, there is a preference of
60.0% when using the out of distribution style test set. This more significant gap
indicates that the model has stronger generalization than the WikiArt model.

6 Limitations and future work

We use simple adjustments to the mean and covariance for the pre-recoloring of
the content image prior. While effective, this process could be better and can
lead to occasional inconsistencies and artifacts in the image colors. We visualize
this example in Figure 9, where imperfections in the color adjustments can lead
to lost details.

Additional future work can involve a stronger focus on architectural changes,
which was not a focus in this work. Finally, though not an issue with our method
specifically, different resolutions of the content image lead to noticeably different
stylized outputs. An artist can remedy this by attempting the process with
multiple resolutions. However, this is an additional parameter that needs to be
explored during inference. Though it could be considered a positive, as it allows
control over the level of style complexity in the edited image.

7 Conclusion

We presented NeAT, a new style transfer model, achieving state-of-the-art per-
formance through novel technical design decisions. We stylize images through
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Fig. 8: NST using NeAT, and baselines. Please zoom for more details.
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Fig. 9: Example of limitation on color adjustments. The squirrel’s tail is overexposed,
and details are lost.

editing rather than regeneration, leading to better content preservation and im-
proved artistic style transfer. We provide a solution to style halos which some-
times appear in stylized images, through careful guidance during patch selection
for a patch co-occurrence loss. We use Sobel edge maps to sort and separate high
frequency and low frequency areas, thereby better matching appropriate areas
of the style image to match regions in the content image for the stylization. We
also release BBST-4M, the first large scale, highly diverse, high resolution NST
dataset, cleaned with a novel stylistic prediction model that we also release.

References

1. Alaluf, Y., Tov, O., Mokady, R., Gal, R., Bermano, A.H.: Hyperstyle: Stylegan
inversion with hypernetworks for real image editing (2021)

2. An, J., Huang, S., Song, Y., Dou, D., Liu, W., Luo, J.: Artflow: Unbiased image
style transfer via reversible neural flows. CoRR abs/2103.16877 (2021), https:
//arxiv.org/abs/2103.16877

3. Chen, H., Zhao, L., Wang, Z., Ming, Z.H., Zuo, Z., Li, A., Xing, W., Lu, D.: Artistic
style transfer with internal-external learning and contrastive learning. In: Beygelz-
imer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural In-
formation Processing Systems (2021), https://openreview.net/forum?id=hm0i-
cunzGW

4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. arXiv preprint arXiv:2002.05709 (2020)

5. Collomosse, J., Bui, T., Wilber, M., Fang, C., Jin, H.: Sketching with style: Visual
search with sketches and aesthetic context. In: Proc. ICCV (2017)

6. Deng, Y., Tang, F., Dong, W., Huang, H., Ma, C., Xu, C.: Arbitrary video style
transfer via multi-channel correlation. CoRR abs/2009.08003 (2020), https://
arxiv.org/abs/2009.08003

7. Deng, Y., Tang, F., Dong, W., Ma, C., Pan, X., Wang, L., Xu, C.: Stytr2: Image
style transfer with transformers (2022)

8. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. CoRR
abs/2010.11929 (2020), https://arxiv.org/abs/2010.11929

https://arxiv.org/abs/2103.16877
https://arxiv.org/abs/2103.16877
https://openreview.net/forum?id=hm0i-cunzGW
https://openreview.net/forum?id=hm0i-cunzGW
https://arxiv.org/abs/2009.08003
https://arxiv.org/abs/2009.08003
https://arxiv.org/abs/2010.11929


16 D. Ruta et al.

9. Gafni, O., Polyak, A., Ashual, O., Sheynin, S., Parikh, D., Taigman, Y.: Make-
a-scene: Scene-based text-to-image generation with human priors (2022). https:
//doi.org/10.48550/ARXIV.2203.13131, https://arxiv.org/abs/2203.13131

10. Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano, A.H., Chechik, G.,
Cohen-Or, D.: An image is worth one word: Personalizing text-to-image generation
using textual inversion (2022). https://doi.org/10.48550/ARXIV.2208.01618,
https://arxiv.org/abs/2208.01618

11. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional
neural networks. In: Proc. CVPR. pp. 2414–2423 (2016)

12. Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-Or, D.:
Prompt-to-prompt image editing with cross attention control (2022). https://
doi.org/10.48550/ARXIV.2208.01626, https://arxiv.org/abs/2208.01626

13. Huang, X., Belongie, S.J.: Arbitrary style transfer in real-time with adaptive in-
stance normalization. CoRR abs/1703.06868 (2017), http://arxiv.org/abs/
1703.06868

14. Karayev, S., Trentacoste, M., Han, H., Agarwala, A., Darrell, T., Hertzmann, A.,
Winnemoller, H.: Recognizing image style. In: Proc. BMVC (2014)

15. Kawar, B., Zada, S., Lang, O., Tov, O., Chang, H., Dekel, T., Mosseri, I., Irani,
M.: Imagic: Text-based real image editing with diffusion models (2022). https:
//doi.org/10.48550/ARXIV.2210.09276, https://arxiv.org/abs/2210.09276

16. Kolkin, N., Kucera, M., Paris, S., Sykora, D., Shechtman, E., Shakhnarovich, G.:
Neural neighbor style transfer (2022). https://doi.org/10.48550/ARXIV.2203.
13215, https://arxiv.org/abs/2203.13215

17. Kolkin, N.I., Salavon, J., Shakhnarovich, G.: Style transfer by relaxed optimal
transport and self-similarity. CoRR abs/1904.12785 (2019), http://arxiv.org/
abs/1904.12785

18. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.: Universal style transfer
via feature transforms. CoRR abs/1705.08086 (2017), http://arxiv.org/abs/
1705.08086

19. Liu, S., Lin, T., He, D., Li, F., Wang, M., Li, X., Sun, Z., Li, Q., Ding, E.:
Adaattn: Revisit attention mechanism in arbitrary neural style transfer. CoRR
abs/2108.03647 (2021), https://arxiv.org/abs/2108.03647

20. Luo, X., Han, Z., Yang, L., Zhang, L.: Consistent style transfer. CoRR
abs/2201.02233 (2022), https://arxiv.org/abs/2201.02233

21. Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.Y., Ermon, S.: Sdedit: Guided
image synthesis and editing with stochastic differential equations (2021). https:
//doi.org/10.48550/ARXIV.2108.01073, https://arxiv.org/abs/2108.01073

22. Park, D.Y., Lee, K.H.: Arbitrary style transfer with style-attentional networks.
CoRR abs/1812.02342 (2018), http://arxiv.org/abs/1812.02342

23. Park, T., Zhu, J.Y., Wang, O., Lu, J., Shechtman, E., Efros, A.A., Zhang, R.:
Swapping autoencoder for deep image manipulation. In: Advances in Neural Infor-
mation Processing Systems (2020)

24. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-
conditional image generation with clip latents (2022). https://doi.org/10.
48550/ARXIV.2204.06125, https://arxiv.org/abs/2204.06125

25. Revaud, J., Almazán, J., de Rezende, R.S., de Souza, C.R.: Learning with average
precision: Training image retrieval with a listwise loss. 2019 IEEE/CVF ICCV pp.
5106–5115 (2019)

26. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models (2021). https://doi.org/10.48550/
ARXIV.2112.10752, https://arxiv.org/abs/2112.10752

https://doi.org/10.48550/ARXIV.2203.13131
https://doi.org/10.48550/ARXIV.2203.13131
https://doi.org/10.48550/ARXIV.2203.13131
https://doi.org/10.48550/ARXIV.2203.13131
https://arxiv.org/abs/2203.13131
https://doi.org/10.48550/ARXIV.2208.01618
https://doi.org/10.48550/ARXIV.2208.01618
https://arxiv.org/abs/2208.01618
https://doi.org/10.48550/ARXIV.2208.01626
https://doi.org/10.48550/ARXIV.2208.01626
https://doi.org/10.48550/ARXIV.2208.01626
https://doi.org/10.48550/ARXIV.2208.01626
https://arxiv.org/abs/2208.01626
http://arxiv.org/abs/1703.06868
http://arxiv.org/abs/1703.06868
https://doi.org/10.48550/ARXIV.2210.09276
https://doi.org/10.48550/ARXIV.2210.09276
https://doi.org/10.48550/ARXIV.2210.09276
https://doi.org/10.48550/ARXIV.2210.09276
https://arxiv.org/abs/2210.09276
https://doi.org/10.48550/ARXIV.2203.13215
https://doi.org/10.48550/ARXIV.2203.13215
https://doi.org/10.48550/ARXIV.2203.13215
https://doi.org/10.48550/ARXIV.2203.13215
https://arxiv.org/abs/2203.13215
http://arxiv.org/abs/1904.12785
http://arxiv.org/abs/1904.12785
http://arxiv.org/abs/1705.08086
http://arxiv.org/abs/1705.08086
https://arxiv.org/abs/2108.03647
https://arxiv.org/abs/2201.02233
https://doi.org/10.48550/ARXIV.2108.01073
https://doi.org/10.48550/ARXIV.2108.01073
https://doi.org/10.48550/ARXIV.2108.01073
https://doi.org/10.48550/ARXIV.2108.01073
https://arxiv.org/abs/2108.01073
http://arxiv.org/abs/1812.02342
https://doi.org/10.48550/ARXIV.2204.06125
https://doi.org/10.48550/ARXIV.2204.06125
https://doi.org/10.48550/ARXIV.2204.06125
https://doi.org/10.48550/ARXIV.2204.06125
https://arxiv.org/abs/2204.06125
https://doi.org/10.48550/ARXIV.2112.10752
https://doi.org/10.48550/ARXIV.2112.10752
https://doi.org/10.48550/ARXIV.2112.10752
https://doi.org/10.48550/ARXIV.2112.10752
https://arxiv.org/abs/2112.10752


NeAT 17

27. Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: Dream-
booth: Fine tuning text-to-image diffusion models for subject-driven generation
(2022). https://doi.org/10.48550/ARXIV.2208.12242, https://arxiv.org/
abs/2208.12242

28. Ruta, D., Motiian, S., Faieta, B., Lin, Z., Jin, H., Filipkowski, A., Gilbert, A.,
Collomosse, J.: Aladin: All layer adaptive instance normalization for fine-grained
style similarity. arXiv preprint arXiv:2103.09776 (2021)

29. Ruta, D., Gilbert, A., Aggarwal, P., Marri, N., Kale, A., Briggs, J., Speed, C., Jin,
H., Faieta, B., Filipkowski, A., Lin, Z., Collomosse, J.: Stylebabel: Artistic style
tagging and captioning (2022). https://doi.org/10.48550/ARXIV.2203.05321,
https://arxiv.org/abs/2203.05321

30. Ruta, D., Gilbert, A., Motiian, S., Faieta, B., Lin, Z., Collomosse, J.: Hypernst:
Hyper-networks for neural style transfer (2022). https://doi.org/10.48550/
ARXIV.2208.04807, https://arxiv.org/abs/2208.04807

31. Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C., Wightman, R., Cherti, M.,
Coombes, T., Katta, A., Mullis, C., Wortsman, M., Schramowski, P., Kundurthy,
S., Crowson, K., Schmidt, L., Kaczmarczyk, R., Jitsev, J.: Laion-5b: An open
large-scale dataset for training next generation image-text models (2022)

32. Shaham, T.R., Dekel, T., Michaeli, T.: Singan: Learning a generative model from
a single natural image. CoRR abs/1905.01164 (2019), http://arxiv.org/abs/
1905.01164

33. Sheng, L., Lin, Z., Shao, J., Wang, X.: Avatar-net: Multi-scale zero-shot style trans-
fer by feature decoration. In: Computer Vision and Pattern Recognition (CVPR),
2018 IEEE Conference on. pp. 1–9 (2018)

34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition (2014)

35. Valevski, D., Kalman, M., Matias, Y., Leviathan, Y.: Unitune: Text-driven image
editing by fine tuning an image generation model on a single image (2022). https:
//doi.org/10.48550/ARXIV.2210.09477, https://arxiv.org/abs/2210.09477

36. Zhang, C., Yang, J., Wang, L., Dai, Z.: S2wat: Image style transfer via hierarchical
vision transformer using strips window attention (2022)

37. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative
adversarial networks (2018). https://doi.org/10.48550/ARXIV.1805.08318,
https://arxiv.org/abs/1805.08318

38. Zhang, K., Kolkin, N., Bi, S., Luan, F., Xu, Z., Shechtman, E., Snavely, N.: Arf:
Artistic radiance fields (2022). https://doi.org/10.48550/ARXIV.2206.06360,
https://arxiv.org/abs/2206.06360

39. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: CVPR (2018)

40. Zhang, Y., Tang, F., Dong, W., Huang, H., Ma, C., Lee, T.Y., Xu, C.: Domain
enhanced arbitrary image style transfer via contrastive learning. In: ACM SIG-
GRAPH (2022)

https://doi.org/10.48550/ARXIV.2208.12242
https://doi.org/10.48550/ARXIV.2208.12242
https://arxiv.org/abs/2208.12242
https://arxiv.org/abs/2208.12242
https://doi.org/10.48550/ARXIV.2203.05321
https://doi.org/10.48550/ARXIV.2203.05321
https://arxiv.org/abs/2203.05321
https://doi.org/10.48550/ARXIV.2208.04807
https://doi.org/10.48550/ARXIV.2208.04807
https://doi.org/10.48550/ARXIV.2208.04807
https://doi.org/10.48550/ARXIV.2208.04807
https://arxiv.org/abs/2208.04807
http://arxiv.org/abs/1905.01164
http://arxiv.org/abs/1905.01164
https://doi.org/10.48550/ARXIV.2210.09477
https://doi.org/10.48550/ARXIV.2210.09477
https://doi.org/10.48550/ARXIV.2210.09477
https://doi.org/10.48550/ARXIV.2210.09477
https://arxiv.org/abs/2210.09477
https://doi.org/10.48550/ARXIV.1805.08318
https://doi.org/10.48550/ARXIV.1805.08318
https://arxiv.org/abs/1805.08318
https://doi.org/10.48550/ARXIV.2206.06360
https://doi.org/10.48550/ARXIV.2206.06360
https://arxiv.org/abs/2206.06360

	NeAT: Neural Artistic Tracing for high resolution Style Transfer

